mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
569cc98982
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
66 lines
2.1 KiB
Python
66 lines
2.1 KiB
Python
import tqdm
|
|
from pathlib import Path
|
|
import srsly
|
|
import cProfile
|
|
import pstats
|
|
import sys
|
|
import itertools
|
|
import ml_datasets
|
|
from wasabi import msg
|
|
|
|
from ..util import load_model
|
|
|
|
|
|
def profile(
|
|
# fmt: off
|
|
model: ("Model to load", "positional", None, str),
|
|
inputs: ("Location of input file. '-' for stdin.", "positional", None, str) = None,
|
|
n_texts: ("Maximum number of texts to use if available", "option", "n", int) = 10000,
|
|
# fmt: on
|
|
):
|
|
"""
|
|
Profile a spaCy pipeline, to find out which functions take the most time.
|
|
Input should be formatted as one JSON object per line with a key "text".
|
|
It can either be provided as a JSONL file, or be read from sys.sytdin.
|
|
If no input file is specified, the IMDB dataset is loaded via Thinc.
|
|
"""
|
|
if inputs is not None:
|
|
inputs = _read_inputs(inputs, msg)
|
|
if inputs is None:
|
|
n_inputs = 25000
|
|
with msg.loading("Loading IMDB dataset via Thinc..."):
|
|
imdb_train, _ = ml_datasets.imdb()
|
|
inputs, _ = zip(*imdb_train)
|
|
msg.info(f"Loaded IMDB dataset and using {n_inputs} examples")
|
|
inputs = inputs[:n_inputs]
|
|
with msg.loading(f"Loading model '{model}'..."):
|
|
nlp = load_model(model)
|
|
msg.good(f"Loaded model '{model}'")
|
|
texts = list(itertools.islice(inputs, n_texts))
|
|
cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
|
|
s = pstats.Stats("Profile.prof")
|
|
msg.divider("Profile stats")
|
|
s.strip_dirs().sort_stats("time").print_stats()
|
|
|
|
|
|
def parse_texts(nlp, texts):
|
|
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
|
|
pass
|
|
|
|
|
|
def _read_inputs(loc, msg):
|
|
if loc == "-":
|
|
msg.info("Reading input from sys.stdin")
|
|
file_ = sys.stdin
|
|
file_ = (line.encode("utf8") for line in file_)
|
|
else:
|
|
input_path = Path(loc)
|
|
if not input_path.exists() or not input_path.is_file():
|
|
msg.fail("Not a valid input data file", loc, exits=1)
|
|
msg.info(f"Using data from {input_path.parts[-1]}")
|
|
file_ = input_path.open()
|
|
for line in file_:
|
|
data = srsly.json_loads(line)
|
|
text = data["text"]
|
|
yield text
|