Pillow/src/PIL/ImageChops.py

304 lines
6.8 KiB
Python
Raw Normal View History

2010-07-31 06:52:47 +04:00
#
# The Python Imaging Library.
# $Id$
#
# standard channel operations
#
# History:
# 1996-03-24 fl Created
# 1996-08-13 fl Added logical operations (for "1" images)
# 2000-10-12 fl Added offset method (from Image.py)
#
# Copyright (c) 1997-2000 by Secret Labs AB
# Copyright (c) 1996-2000 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from . import Image
2010-07-31 06:52:47 +04:00
def constant(image, value):
2023-10-19 11:12:01 +03:00
"""Fill a channel with a given gray level.
2013-10-12 09:45:23 +04:00
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
return Image.new("L", image.size, value)
def duplicate(image):
2013-10-12 09:45:23 +04:00
"""Copy a channel. Alias for :py:meth:`PIL.Image.Image.copy`.
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
return image.copy()
def invert(image):
2013-10-12 09:45:23 +04:00
"""
Invert an image (channel). ::
2013-10-12 09:45:23 +04:00
out = MAX - image
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image.load()
return image._new(image.im.chop_invert())
def lighter(image1, image2):
2013-10-12 09:45:23 +04:00
"""
Compares the two images, pixel by pixel, and returns a new image containing
the lighter values. ::
2013-10-12 09:45:23 +04:00
out = max(image1, image2)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_lighter(image2.im))
def darker(image1, image2):
2013-10-12 09:45:23 +04:00
"""
Compares the two images, pixel by pixel, and returns a new image containing
the darker values. ::
2013-10-12 09:45:23 +04:00
out = min(image1, image2)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_darker(image2.im))
def difference(image1, image2):
2013-10-12 09:45:23 +04:00
"""
Returns the absolute value of the pixel-by-pixel difference between the two
images. ::
2013-10-12 09:45:23 +04:00
out = abs(image1 - image2)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_difference(image2.im))
def multiply(image1, image2):
2013-10-12 09:45:23 +04:00
"""
Superimposes two images on top of each other.
If you multiply an image with a solid black image, the result is black. If
you multiply with a solid white image, the image is unaffected. ::
2013-10-12 09:45:23 +04:00
out = image1 * image2 / MAX
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_multiply(image2.im))
def screen(image1, image2):
2013-10-12 09:45:23 +04:00
"""
Superimposes two inverted images on top of each other. ::
2013-10-12 09:45:23 +04:00
out = MAX - ((MAX - image1) * (MAX - image2) / MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_screen(image2.im))
2019-11-22 16:30:43 +03:00
2019-12-25 22:23:32 +03:00
def soft_light(image1, image2):
2019-11-22 16:03:59 +03:00
"""
2019-11-22 16:30:43 +03:00
Superimposes two images on top of each other using the Soft Light algorithm
2019-11-22 16:03:59 +03:00
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
2019-12-25 22:23:32 +03:00
return image1._new(image1.im.chop_soft_light(image2.im))
2019-11-22 16:03:59 +03:00
2019-11-22 16:30:43 +03:00
2019-12-25 22:23:32 +03:00
def hard_light(image1, image2):
2019-11-22 16:03:59 +03:00
"""
2019-11-22 16:54:00 +03:00
Superimposes two images on top of each other using the Hard Light algorithm
2019-11-22 16:03:59 +03:00
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
2019-12-25 22:23:32 +03:00
return image1._new(image1.im.chop_hard_light(image2.im))
2010-07-31 06:52:47 +04:00
2019-11-22 16:47:51 +03:00
2019-11-22 16:30:43 +03:00
def overlay(image1, image2):
"""
2019-11-22 16:54:00 +03:00
Superimposes two images on top of each other using the Overlay algorithm
2019-11-22 16:30:43 +03:00
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_overlay(image2.im))
2019-11-22 16:47:51 +03:00
2010-07-31 06:52:47 +04:00
def add(image1, image2, scale=1.0, offset=0):
2013-10-12 09:45:23 +04:00
"""
Adds two images, dividing the result by scale and adding the
offset. If omitted, scale defaults to 1.0, and offset to 0.0. ::
2013-10-12 09:45:23 +04:00
out = ((image1 + image2) / scale + offset)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_add(image2.im, scale, offset))
def subtract(image1, image2, scale=1.0, offset=0):
2013-10-12 09:45:23 +04:00
"""
Subtracts two images, dividing the result by scale and adding the offset.
If omitted, scale defaults to 1.0, and offset to 0.0. ::
2013-10-12 09:45:23 +04:00
out = ((image1 - image2) / scale + offset)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_subtract(image2.im, scale, offset))
def add_modulo(image1, image2):
"""Add two images, without clipping the result. ::
2013-10-12 09:45:23 +04:00
out = ((image1 + image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_add_modulo(image2.im))
def subtract_modulo(image1, image2):
"""Subtract two images, without clipping the result. ::
2013-10-12 09:45:23 +04:00
out = ((image1 - image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_subtract_modulo(image2.im))
def logical_and(image1, image2):
"""Logical AND between two images.
Both of the images must have mode "1". If you would like to perform a
logical AND on an image with a mode other than "1", try
:py:meth:`~PIL.ImageChops.multiply` instead, using a black-and-white mask
as the second image. ::
2013-10-12 09:45:23 +04:00
out = ((image1 and image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_and(image2.im))
def logical_or(image1, image2):
"""Logical OR between two images.
Both of the images must have mode "1". ::
2013-10-12 09:45:23 +04:00
out = ((image1 or image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_or(image2.im))
def logical_xor(image1, image2):
"""Logical XOR between two images.
Both of the images must have mode "1". ::
2013-10-12 09:45:23 +04:00
out = ((bool(image1) != bool(image2)) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
image1.load()
image2.load()
return image1._new(image1.im.chop_xor(image2.im))
def blend(image1, image2, alpha):
2013-10-12 09:45:23 +04:00
"""Blend images using constant transparency weight. Alias for
2020-07-09 20:48:04 +03:00
:py:func:`PIL.Image.blend`.
2013-10-12 09:45:23 +04:00
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
return Image.blend(image1, image2, alpha)
def composite(image1, image2, mask):
2013-10-12 09:45:23 +04:00
"""Create composite using transparency mask. Alias for
2020-07-09 20:48:04 +03:00
:py:func:`PIL.Image.composite`.
2013-10-12 09:45:23 +04:00
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
return Image.composite(image1, image2, mask)
def offset(image, xoffset, yoffset=None):
2013-10-12 09:45:23 +04:00
"""Returns a copy of the image where data has been offset by the given
distances. Data wraps around the edges. If ``yoffset`` is omitted, it
is assumed to be equal to ``xoffset``.
2013-10-12 09:45:23 +04:00
2022-04-10 20:55:53 +03:00
:param image: Input image.
2013-10-12 09:45:23 +04:00
:param xoffset: The horizontal distance.
:param yoffset: The vertical distance. If omitted, both
distances are set to the same value.
:rtype: :py:class:`~PIL.Image.Image`
"""
2010-07-31 06:52:47 +04:00
if yoffset is None:
yoffset = xoffset
image.load()
return image._new(image.im.offset(xoffset, yoffset))