mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-12 18:26:17 +03:00
replace gaussian blur with extended box blur implementation
This commit is contained in:
parent
d89c9ab750
commit
65173f946b
|
@ -149,12 +149,11 @@ class GaussianBlur(Filter):
|
|||
"""
|
||||
name = "GaussianBlur"
|
||||
|
||||
def __init__(self, radius=2, effective_scale=None):
|
||||
def __init__(self, radius=2):
|
||||
self.radius = radius
|
||||
self.effective_scale = effective_scale
|
||||
|
||||
def filter(self, image):
|
||||
return image.gaussian_blur(self.radius, self.effective_scale or 2.6)
|
||||
return image.gaussian_blur(self.radius)
|
||||
|
||||
|
||||
class UnsharpMask(Filter):
|
||||
|
|
|
@ -414,18 +414,15 @@ def solarize(image, threshold=128):
|
|||
# --------------------------------------------------------------------
|
||||
# PIL USM components, from Kevin Cazabon.
|
||||
|
||||
def gaussian_blur(im, radius=None, effective_scale=None):
|
||||
""" PIL_usm.gblur(im, [radius], [effective_scale])"""
|
||||
def gaussian_blur(im, radius=None):
|
||||
""" PIL_usm.gblur(im, [radius])"""
|
||||
|
||||
if radius is None:
|
||||
radius = 5.0
|
||||
|
||||
if effective_scale is None:
|
||||
effective_scale = 2.6
|
||||
|
||||
im.load()
|
||||
|
||||
return im.im.gaussian_blur(radius, effective_scale)
|
||||
return im.im.gaussian_blur(radius)
|
||||
|
||||
gblur = gaussian_blur
|
||||
|
||||
|
@ -462,18 +459,3 @@ def box_blur(image, radius):
|
|||
image.load()
|
||||
|
||||
return image._new(image.im.box_blur(radius))
|
||||
|
||||
|
||||
def extended_box_blur(image, radius, n=3):
|
||||
sigma2 = float(radius) * radius / n
|
||||
# http://www.mia.uni-saarland.de/Publications/gwosdek-ssvm11.pdf
|
||||
# [7] Box length.
|
||||
L = math.sqrt(12.0 * sigma2 + 1.0)
|
||||
# [11] Integer part of box radius.
|
||||
l = math.floor((L - 1.0) / 2.0)
|
||||
# [14], [Fig. 2] Fractional part of box radius.
|
||||
a = (2 * l + 1) * (l * (l + 1) - 3 * sigma2)
|
||||
a /= 6 * (sigma2 - (l + 1) * (l + 1))
|
||||
|
||||
image.load()
|
||||
return image._new(image.im.box_blur(l + a, n))
|
||||
|
|
|
@ -35,21 +35,6 @@ class TestBoxBlurApi(PillowTestCase):
|
|||
self.assertEqual(i.size, sample.size)
|
||||
self.assertIsInstance(i, Image.Image)
|
||||
|
||||
def test_imageops_extended_box_blur(self):
|
||||
i = ImageOps.extended_box_blur(sample, 1)
|
||||
self.assertEqual(i.mode, sample.mode)
|
||||
self.assertEqual(i.size, sample.size)
|
||||
self.assertIsInstance(i, Image.Image)
|
||||
|
||||
def test_extended_box_blur_radius(self):
|
||||
mock = ImageMock()
|
||||
self.assertEqual((0.25, 3), ImageOps.extended_box_blur(mock, 1))
|
||||
self.assertEqual((0.25, 3), ImageOps.extended_box_blur(mock, 1, 3))
|
||||
self.assertAlmostEqual(ImageOps.extended_box_blur(mock, .5, 3)[0],
|
||||
0.0455, delta=0.0001)
|
||||
self.assertAlmostEqual(ImageOps.extended_box_blur(mock, 35, 3)[0],
|
||||
34.49, delta=0.01)
|
||||
|
||||
|
||||
class TestBoxBlur(PillowTestCase):
|
||||
|
||||
|
|
|
@ -67,8 +67,6 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
def test_blur_accuracy(self):
|
||||
|
||||
i = snakes._new(ImageOps.gaussian_blur(snakes, .7))
|
||||
# Alpha channel must match whole.
|
||||
self.assertEqual(i.split()[3], snakes.split()[3])
|
||||
# These pixels surrounded with pixels with 255 intensity.
|
||||
# They must be very close to 255.
|
||||
for x, y, c in [(1, 0, 1), (2, 0, 1), (7, 8, 1), (8, 8, 1), (2, 9, 1),
|
||||
|
|
|
@ -863,8 +863,8 @@ _gaussian_blur(ImagingObject* self, PyObject* args)
|
|||
Imaging imOut;
|
||||
|
||||
float radius = 0;
|
||||
float effectiveScale = 2.6;
|
||||
if (!PyArg_ParseTuple(args, "f|f", &radius, &effectiveScale))
|
||||
int passes = 3;
|
||||
if (!PyArg_ParseTuple(args, "f|i", &radius, &passes))
|
||||
return NULL;
|
||||
|
||||
imIn = self->image;
|
||||
|
@ -872,7 +872,7 @@ _gaussian_blur(ImagingObject* self, PyObject* args)
|
|||
if (!imOut)
|
||||
return NULL;
|
||||
|
||||
if (!ImagingGaussianBlur(imIn, imOut, radius, effectiveScale))
|
||||
if ( ! ImagingGaussianBlur(imIn, imOut, radius, passes))
|
||||
return NULL;
|
||||
|
||||
return PyImagingNew(imOut);
|
||||
|
|
|
@ -264,7 +264,7 @@ extern Imaging ImagingFilter(
|
|||
extern Imaging ImagingFlipLeftRight(Imaging imOut, Imaging imIn);
|
||||
extern Imaging ImagingFlipTopBottom(Imaging imOut, Imaging imIn);
|
||||
extern Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius,
|
||||
float effectiveScale);
|
||||
int passes);
|
||||
extern Imaging ImagingGetBand(Imaging im, int band);
|
||||
extern int ImagingGetBBox(Imaging im, int bbox[4]);
|
||||
typedef struct { int x, y; INT32 count; INT32 pixel; } ImagingColorItem;
|
||||
|
|
|
@ -10,174 +10,6 @@
|
|||
#include "Imaging.h"
|
||||
|
||||
|
||||
static Imaging
|
||||
gblur(Imaging im, Imaging imOut, float radius, float effectiveScale, int channels)
|
||||
{
|
||||
ImagingSectionCookie cookie;
|
||||
|
||||
float *maskData = NULL;
|
||||
int y = 0;
|
||||
int x = 0;
|
||||
float sum = 0.0;
|
||||
|
||||
float *buffer = NULL;
|
||||
|
||||
int *line = NULL;
|
||||
UINT8 *line8 = NULL;
|
||||
|
||||
int pix = 0;
|
||||
float newPixel[4];
|
||||
int channel = 0;
|
||||
int offset = 0;
|
||||
|
||||
int effectiveRadius = 0;
|
||||
int window = 0;
|
||||
int hasAlpha = 0;
|
||||
|
||||
/* Do the gaussian blur */
|
||||
|
||||
/* For a symmetrical gaussian blur, instead of doing a radius*radius
|
||||
matrix lookup, you get the EXACT same results by doing a radius*1
|
||||
transform, followed by a 1*radius transform. This reduces the
|
||||
number of lookups exponentially (10 lookups per pixel for a
|
||||
radius of 5 instead of 25 lookups). So, we blur the lines first,
|
||||
then we blur the resulting columns. */
|
||||
|
||||
/* Only pixels in effective radius from source pixel are accounted.
|
||||
The Gaussian values outside 3 x radius is near zero. */
|
||||
effectiveRadius = (int) ceil(radius * effectiveScale);
|
||||
/* Window is number of pixels forming the result pixel on one axis.
|
||||
It is source pixel and effective radius in both directions. */
|
||||
window = effectiveRadius * 2 + 1;
|
||||
|
||||
/* create the maskData for the gaussian curve */
|
||||
maskData = malloc(window * sizeof(float));
|
||||
for (pix = 0; pix < window; pix++) {
|
||||
offset = pix - effectiveRadius;
|
||||
if (radius) {
|
||||
/* http://en.wikipedia.org/wiki/Gaussian_blur
|
||||
"1 / sqrt(2 * pi * dev)" is constant and will be eliminated
|
||||
by normalization. */
|
||||
maskData[pix] = pow(2.718281828459,
|
||||
-offset * offset / (2 * radius * radius));
|
||||
} else {
|
||||
maskData[pix] = 1;
|
||||
}
|
||||
sum += maskData[pix];
|
||||
}
|
||||
|
||||
for (pix = 0; pix < window; pix++) {
|
||||
maskData[pix] *= (1.0 / sum);
|
||||
// printf("%d %f\n", pix, maskData[pix]);
|
||||
}
|
||||
// printf("\n");
|
||||
|
||||
/* create a temporary memory buffer for the data for the first pass
|
||||
memset the buffer to 0 so we can use it directly with += */
|
||||
|
||||
/* don't bother about alpha */
|
||||
buffer = calloc((size_t) (im->xsize * im->ysize * channels),
|
||||
sizeof(float));
|
||||
if (buffer == NULL)
|
||||
return ImagingError_MemoryError();
|
||||
|
||||
/* be nice to other threads while you go off to lala land */
|
||||
ImagingSectionEnter(&cookie);
|
||||
|
||||
/* perform a blur on each line, and place in the temporary storage buffer */
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
if (channels == 1 && im->image8 != NULL) {
|
||||
line8 = (UINT8 *) im->image8[y];
|
||||
} else {
|
||||
line = im->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < window; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset = pix - effectiveRadius;
|
||||
if (x + offset < 0)
|
||||
offset = -x;
|
||||
else if (x + offset >= im->xsize)
|
||||
offset = im->xsize - x - 1;
|
||||
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
if (channels == 1) {
|
||||
buffer[(y * im->xsize) + x] +=
|
||||
((float) ((UINT8 *) & line8[x + offset])[0]) *
|
||||
(maskData[pix]);
|
||||
} else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
buffer[(y * im->xsize * channels) +
|
||||
(x * channels) + channel] +=
|
||||
((float) ((UINT8 *) & line[x + offset])
|
||||
[channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
|
||||
hasAlpha = 1;
|
||||
}
|
||||
|
||||
/* perform a blur on each column in the buffer, and place in the
|
||||
output image */
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = .5;
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < window; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset = pix - effectiveRadius;
|
||||
if (y + offset < 0)
|
||||
offset = -y;
|
||||
else if (y + offset >= im->ysize)
|
||||
offset = im->ysize - y - 1;
|
||||
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
newPixel[channel] +=
|
||||
(buffer
|
||||
[((y + offset) * im->xsize * channels) +
|
||||
(x * channels) + channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
|
||||
if (channels == 1) {
|
||||
imOut->image8[y][x] = (UINT8)(newPixel[0]);
|
||||
} else {
|
||||
/* if the image is RGBX or RGBA, copy the 4th channel data to
|
||||
newPixel, so it gets put in imOut */
|
||||
if (hasAlpha) {
|
||||
newPixel[3] = (float) ((UINT8 *) & im->image32[y][x])[3];
|
||||
}
|
||||
|
||||
/* for RGB, the fourth channel isn't used anyways, so just
|
||||
pack a 0 in there, this saves checking the mode for each
|
||||
pixel. */
|
||||
/* this might don't work on little-endian machines... fix it! */
|
||||
imOut->image32[y][x] =
|
||||
(UINT8)(newPixel[0]) | (UINT8)(newPixel[1]) << 8 |
|
||||
(UINT8)(newPixel[2]) << 16 | (UINT8)(newPixel[3]) << 24;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* free the buffer */
|
||||
free(buffer);
|
||||
|
||||
/* get the GIL back so Python knows who you are */
|
||||
ImagingSectionLeave(&cookie);
|
||||
|
||||
return imOut;
|
||||
}
|
||||
|
||||
static inline UINT8 clip(double in)
|
||||
{
|
||||
if (in >= 255.0)
|
||||
|
@ -188,26 +20,24 @@ static inline UINT8 clip(double in)
|
|||
}
|
||||
|
||||
Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius,
|
||||
float effectiveScale)
|
||||
int passes)
|
||||
{
|
||||
int channels = 0;
|
||||
float sigma2, L, l, a;
|
||||
|
||||
if (strcmp(im->mode, "RGB") == 0) {
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "RGBA") == 0) {
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "RGBX") == 0) {
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "CMYK") == 0) {
|
||||
channels = 4;
|
||||
} else if (strcmp(im->mode, "L") == 0) {
|
||||
channels = 1;
|
||||
} else
|
||||
return ImagingError_ModeError();
|
||||
sigma2 = radius * radius / passes;
|
||||
// from http://www.mia.uni-saarland.de/Publications/gwosdek-ssvm11.pdf
|
||||
// [7] Box length.
|
||||
L = sqrt(12.0 * sigma2 + 1.0);
|
||||
// [11] Integer part of box radius.
|
||||
l = floor((L - 1.0) / 2.0);
|
||||
// [14], [Fig. 2] Fractional part of box radius.
|
||||
a = (2 * l + 1) * (l * (l + 1) - 3 * sigma2);
|
||||
a /= 6 * (sigma2 - (l + 1) * (l + 1));
|
||||
|
||||
return gblur(im, imOut, radius, effectiveScale, channels);
|
||||
return ImagingBoxBlur(imOut, im, l + a, passes);
|
||||
}
|
||||
|
||||
|
||||
Imaging
|
||||
ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
||||
int threshold)
|
||||
|
@ -246,7 +76,7 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
|||
|
||||
/* first, do a gaussian blur on the image, putting results in imOut
|
||||
temporarily */
|
||||
result = gblur(im, imOut, radius, 2.6, channels);
|
||||
result = ImagingGaussianBlur(im, imOut, radius, 3);
|
||||
if (!result)
|
||||
return NULL;
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user