mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-25 00:34:14 +03:00
Merge branch 'gaussian-refactor' into fast-box-blur
This commit is contained in:
commit
d89c9ab750
|
@ -149,11 +149,12 @@ class GaussianBlur(Filter):
|
|||
"""
|
||||
name = "GaussianBlur"
|
||||
|
||||
def __init__(self, radius=2):
|
||||
def __init__(self, radius=2, effective_scale=None):
|
||||
self.radius = radius
|
||||
self.effective_scale = effective_scale
|
||||
|
||||
def filter(self, image):
|
||||
return image.gaussian_blur(self.radius)
|
||||
return image.gaussian_blur(self.radius, self.effective_scale or 2.6)
|
||||
|
||||
|
||||
class UnsharpMask(Filter):
|
||||
|
|
|
@ -414,15 +414,18 @@ def solarize(image, threshold=128):
|
|||
# --------------------------------------------------------------------
|
||||
# PIL USM components, from Kevin Cazabon.
|
||||
|
||||
def gaussian_blur(im, radius=None):
|
||||
""" PIL_usm.gblur(im, [radius])"""
|
||||
def gaussian_blur(im, radius=None, effective_scale=None):
|
||||
""" PIL_usm.gblur(im, [radius], [effective_scale])"""
|
||||
|
||||
if radius is None:
|
||||
radius = 5.0
|
||||
|
||||
if effective_scale is None:
|
||||
effective_scale = 2.6
|
||||
|
||||
im.load()
|
||||
|
||||
return im.im.gaussian_blur(radius)
|
||||
return im.im.gaussian_blur(radius, effective_scale)
|
||||
|
||||
gblur = gaussian_blur
|
||||
|
||||
|
|
BIN
Tests/images/color_snakes.png
Normal file
BIN
Tests/images/color_snakes.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.3 KiB |
|
@ -5,6 +5,7 @@ from PIL import ImageOps
|
|||
from PIL import ImageFilter
|
||||
|
||||
im = Image.open("Tests/images/hopper.ppm")
|
||||
snakes = Image.open("Tests/images/color_snakes.png")
|
||||
|
||||
|
||||
class TestImageOpsUsm(PillowTestCase):
|
||||
|
@ -16,7 +17,7 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
self.assertEqual(i.size, (128, 128))
|
||||
# i.save("blur.bmp")
|
||||
|
||||
i = ImageOps.usm(im, 2.0, 125, 8)
|
||||
i = ImageOps.unsharp_mask(im, 2.0, 125, 8)
|
||||
self.assertEqual(i.mode, "RGB")
|
||||
self.assertEqual(i.size, (128, 128))
|
||||
# i.save("usm.bmp")
|
||||
|
@ -33,7 +34,7 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
self.assertEqual(i.mode, "RGB")
|
||||
self.assertEqual(i.size, (128, 128))
|
||||
|
||||
def test_usm(self):
|
||||
def test_usm_formats(self):
|
||||
|
||||
usm = ImageOps.unsharp_mask
|
||||
self.assertRaises(ValueError, lambda: usm(im.convert("1")))
|
||||
|
@ -45,7 +46,7 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
usm(im.convert("CMYK"))
|
||||
self.assertRaises(ValueError, lambda: usm(im.convert("YCbCr")))
|
||||
|
||||
def test_blur(self):
|
||||
def test_blur_formats(self):
|
||||
|
||||
blur = ImageOps.gaussian_blur
|
||||
self.assertRaises(ValueError, lambda: blur(im.convert("1")))
|
||||
|
@ -57,6 +58,33 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
blur(im.convert("CMYK"))
|
||||
self.assertRaises(ValueError, lambda: blur(im.convert("YCbCr")))
|
||||
|
||||
def test_usm_accuracy(self):
|
||||
|
||||
i = snakes._new(ImageOps.unsharp_mask(snakes, 5, 1024, 0))
|
||||
# Image should not be changed because it have only 0 and 255 levels.
|
||||
self.assertEqual(i.tobytes(), snakes.tobytes())
|
||||
|
||||
def test_blur_accuracy(self):
|
||||
|
||||
i = snakes._new(ImageOps.gaussian_blur(snakes, .7))
|
||||
# Alpha channel must match whole.
|
||||
self.assertEqual(i.split()[3], snakes.split()[3])
|
||||
# These pixels surrounded with pixels with 255 intensity.
|
||||
# They must be very close to 255.
|
||||
for x, y, c in [(1, 0, 1), (2, 0, 1), (7, 8, 1), (8, 8, 1), (2, 9, 1),
|
||||
(7, 3, 0), (8, 3, 0), (5, 8, 0), (5, 9, 0), (1, 3, 0),
|
||||
(4, 3, 2), (4, 2, 2)]:
|
||||
self.assertGreaterEqual(i.im.getpixel((x, y))[c], 250)
|
||||
# Fuzzy match.
|
||||
gp = lambda x, y: i.im.getpixel((x, y))
|
||||
self.assertTrue(211 <= gp(7, 4)[0] <= 213)
|
||||
self.assertTrue(211 <= gp(7, 5)[2] <= 213)
|
||||
self.assertTrue(211 <= gp(7, 6)[2] <= 213)
|
||||
self.assertTrue(211 <= gp(7, 7)[1] <= 213)
|
||||
self.assertTrue(211 <= gp(8, 4)[0] <= 213)
|
||||
self.assertTrue(211 <= gp(8, 5)[2] <= 213)
|
||||
self.assertTrue(211 <= gp(8, 6)[2] <= 213)
|
||||
self.assertTrue(211 <= gp(8, 7)[1] <= 213)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
|
@ -863,7 +863,8 @@ _gaussian_blur(ImagingObject* self, PyObject* args)
|
|||
Imaging imOut;
|
||||
|
||||
float radius = 0;
|
||||
if (!PyArg_ParseTuple(args, "f", &radius))
|
||||
float effectiveScale = 2.6;
|
||||
if (!PyArg_ParseTuple(args, "f|f", &radius, &effectiveScale))
|
||||
return NULL;
|
||||
|
||||
imIn = self->image;
|
||||
|
@ -871,7 +872,7 @@ _gaussian_blur(ImagingObject* self, PyObject* args)
|
|||
if (!imOut)
|
||||
return NULL;
|
||||
|
||||
if (!ImagingGaussianBlur(imIn, imOut, radius))
|
||||
if (!ImagingGaussianBlur(imIn, imOut, radius, effectiveScale))
|
||||
return NULL;
|
||||
|
||||
return PyImagingNew(imOut);
|
||||
|
|
|
@ -263,7 +263,8 @@ extern Imaging ImagingFilter(
|
|||
FLOAT32 offset, FLOAT32 divisor);
|
||||
extern Imaging ImagingFlipLeftRight(Imaging imOut, Imaging imIn);
|
||||
extern Imaging ImagingFlipTopBottom(Imaging imOut, Imaging imIn);
|
||||
extern Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius);
|
||||
extern Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius,
|
||||
float effectiveScale);
|
||||
extern Imaging ImagingGetBand(Imaging im, int band);
|
||||
extern int ImagingGetBBox(Imaging im, int bbox[4]);
|
||||
typedef struct { int x, y; INT32 count; INT32 pixel; } ImagingColorItem;
|
||||
|
|
|
@ -9,62 +9,16 @@
|
|||
#include "Python.h"
|
||||
#include "Imaging.h"
|
||||
|
||||
#define PILUSMVERSION "0.6.1"
|
||||
|
||||
/* version history
|
||||
|
||||
0.6.1 converted to C and added to PIL 1.1.7
|
||||
|
||||
0.6.0 fixed/improved float radius support (oops!)
|
||||
now that radius can be a float (properly), changed radius value to
|
||||
be an actual radius (instead of diameter). So, you should get
|
||||
similar results from PIL_usm as from other paint programs when
|
||||
using the SAME values (no doubling of radius required any more).
|
||||
Be careful, this may "break" software if you had it set for 2x
|
||||
or 5x the radius as was recommended with earlier versions.
|
||||
made PILusm thread-friendly (release GIL before lengthly operations,
|
||||
and re-acquire it before returning to Python). This makes a huge
|
||||
difference with multi-threaded applications on dual-processor
|
||||
or "Hyperthreading"-enabled systems (Pentium4, Xeon, etc.)
|
||||
|
||||
0.5.0 added support for float radius values!
|
||||
|
||||
0.4.0 tweaked gaussian curve calculation to be closer to consistent shape
|
||||
across a wide range of radius values
|
||||
|
||||
0.3.0 changed deviation calculation in gausian algorithm to be dynamic
|
||||
_gblur now adds 1 to the user-supplied radius before using it so
|
||||
that a value of "0" returns the original image instead of a
|
||||
black one.
|
||||
fixed handling of alpha channel in RGBX, RGBA images
|
||||
improved speed of gblur by reducing unnecessary checks and assignments
|
||||
|
||||
0.2.0 fixed L-mode image support
|
||||
|
||||
0.1.0 initial release
|
||||
|
||||
*/
|
||||
|
||||
static inline UINT8 clip(double in)
|
||||
{
|
||||
if (in >= 255.0)
|
||||
return (UINT8) 255;
|
||||
if (in <= 0.0)
|
||||
return (UINT8) 0;
|
||||
return (UINT8) in;
|
||||
}
|
||||
|
||||
static Imaging
|
||||
gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
||||
gblur(Imaging im, Imaging imOut, float radius, float effectiveScale, int channels)
|
||||
{
|
||||
ImagingSectionCookie cookie;
|
||||
|
||||
float *maskData = NULL;
|
||||
int y = 0;
|
||||
int x = 0;
|
||||
float z = 0;
|
||||
float sum = 0.0;
|
||||
float dev = 0.0;
|
||||
|
||||
float *buffer = NULL;
|
||||
|
||||
|
@ -75,12 +29,10 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
|||
float newPixel[4];
|
||||
int channel = 0;
|
||||
int offset = 0;
|
||||
INT32 newPixelFinals;
|
||||
|
||||
int radius = 0;
|
||||
float remainder = 0.0;
|
||||
|
||||
int i;
|
||||
int effectiveRadius = 0;
|
||||
int window = 0;
|
||||
int hasAlpha = 0;
|
||||
|
||||
/* Do the gaussian blur */
|
||||
|
||||
|
@ -91,156 +43,130 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
|||
radius of 5 instead of 25 lookups). So, we blur the lines first,
|
||||
then we blur the resulting columns. */
|
||||
|
||||
/* first, round radius off to the next higher integer and hold the
|
||||
remainder this is used so we can support float radius values
|
||||
properly. */
|
||||
|
||||
remainder = floatRadius - ((int) floatRadius);
|
||||
floatRadius = ceil(floatRadius);
|
||||
|
||||
/* Next, double the radius and offset by 2.0... that way "0" returns
|
||||
the original image instead of a black one. We multiply it by 2.0
|
||||
so that it is a true "radius", not a diameter (the results match
|
||||
other paint programs closer that way too). */
|
||||
radius = (int) ((floatRadius * 2.0) + 2.0);
|
||||
/* Only pixels in effective radius from source pixel are accounted.
|
||||
The Gaussian values outside 3 x radius is near zero. */
|
||||
effectiveRadius = (int) ceil(radius * effectiveScale);
|
||||
/* Window is number of pixels forming the result pixel on one axis.
|
||||
It is source pixel and effective radius in both directions. */
|
||||
window = effectiveRadius * 2 + 1;
|
||||
|
||||
/* create the maskData for the gaussian curve */
|
||||
maskData = malloc(radius * sizeof(float));
|
||||
/* FIXME: error checking */
|
||||
for (x = 0; x < radius; x++) {
|
||||
z = ((float) (x + 2) / ((float) radius));
|
||||
dev = 0.5 + (((float) (radius * radius)) * 0.001);
|
||||
/* you can adjust this factor to change the shape/center-weighting
|
||||
of the gaussian */
|
||||
maskData[x] = (float) pow((1.0 / sqrt(2.0 * 3.14159265359 * dev)),
|
||||
((-(z - 1.0) * -(x - 1.0)) /
|
||||
(2.0 * dev)));
|
||||
maskData = malloc(window * sizeof(float));
|
||||
for (pix = 0; pix < window; pix++) {
|
||||
offset = pix - effectiveRadius;
|
||||
if (radius) {
|
||||
/* http://en.wikipedia.org/wiki/Gaussian_blur
|
||||
"1 / sqrt(2 * pi * dev)" is constant and will be eliminated
|
||||
by normalization. */
|
||||
maskData[pix] = pow(2.718281828459,
|
||||
-offset * offset / (2 * radius * radius));
|
||||
} else {
|
||||
maskData[pix] = 1;
|
||||
}
|
||||
sum += maskData[pix];
|
||||
}
|
||||
|
||||
/* if there's any remainder, multiply the first/last values in
|
||||
MaskData it. this allows us to support float radius values. */
|
||||
if (remainder > 0.0) {
|
||||
maskData[0] *= remainder;
|
||||
maskData[radius - 1] *= remainder;
|
||||
}
|
||||
|
||||
for (x = 0; x < radius; x++) {
|
||||
/* this is done separately now due to the correction for float
|
||||
radius values above */
|
||||
sum += maskData[x];
|
||||
}
|
||||
|
||||
for (i = 0; i < radius; i++) {
|
||||
maskData[i] *= (1.0 / sum);
|
||||
/* printf("%f\n", maskData[i]); */
|
||||
for (pix = 0; pix < window; pix++) {
|
||||
maskData[pix] *= (1.0 / sum);
|
||||
// printf("%d %f\n", pix, maskData[pix]);
|
||||
}
|
||||
// printf("\n");
|
||||
|
||||
/* create a temporary memory buffer for the data for the first pass
|
||||
memset the buffer to 0 so we can use it directly with += */
|
||||
|
||||
/* don't bother about alpha/padding */
|
||||
/* don't bother about alpha */
|
||||
buffer = calloc((size_t) (im->xsize * im->ysize * channels),
|
||||
sizeof(float));
|
||||
sizeof(float));
|
||||
if (buffer == NULL)
|
||||
return ImagingError_MemoryError();
|
||||
return ImagingError_MemoryError();
|
||||
|
||||
/* be nice to other threads while you go off to lala land */
|
||||
ImagingSectionEnter(&cookie);
|
||||
|
||||
/* memset(buffer, 0, sizeof(buffer)); */
|
||||
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
||||
|
||||
/* perform a blur on each line, and place in the temporary storage buffer */
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
if (channels == 1 && im->image8 != NULL) {
|
||||
line8 = (UINT8 *) im->image8[y];
|
||||
} else {
|
||||
line = im->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < radius; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset =
|
||||
(int) ((-((float) radius / 2.0) + (float) pix) + 0.5);
|
||||
if (x + offset < 0)
|
||||
offset = -x;
|
||||
else if (x + offset >= im->xsize)
|
||||
offset = im->xsize - x - 1;
|
||||
if (channels == 1 && im->image8 != NULL) {
|
||||
line8 = (UINT8 *) im->image8[y];
|
||||
} else {
|
||||
line = im->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < window; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset = pix - effectiveRadius;
|
||||
if (x + offset < 0)
|
||||
offset = -x;
|
||||
else if (x + offset >= im->xsize)
|
||||
offset = im->xsize - x - 1;
|
||||
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
if (channels == 1) {
|
||||
buffer[(y * im->xsize) + x] +=
|
||||
((float) ((UINT8 *) & line8[x + offset])[0]) *
|
||||
(maskData[pix]);
|
||||
} else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
buffer[(y * im->xsize * channels) +
|
||||
(x * channels) + channel] +=
|
||||
((float) ((UINT8 *) & line[x + offset])
|
||||
[channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
if (channels == 1) {
|
||||
buffer[(y * im->xsize) + x] +=
|
||||
((float) ((UINT8 *) & line8[x + offset])[0]) *
|
||||
(maskData[pix]);
|
||||
} else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
buffer[(y * im->xsize * channels) +
|
||||
(x * channels) + channel] +=
|
||||
((float) ((UINT8 *) & line[x + offset])
|
||||
[channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
|
||||
hasAlpha = 1;
|
||||
}
|
||||
|
||||
/* perform a blur on each column in the buffer, and place in the
|
||||
output image */
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < radius; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset =
|
||||
(int) (-((float) radius / 2.0) + (float) pix + 0.5);
|
||||
if (y + offset < 0)
|
||||
offset = -y;
|
||||
else if (y + offset >= im->ysize)
|
||||
offset = im->ysize - y - 1;
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
newPixel[channel] +=
|
||||
(buffer
|
||||
[((y + offset) * im->xsize * channels) +
|
||||
(x * channels) + channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
/* if the image is RGBX or RGBA, copy the 4th channel data to
|
||||
newPixel, so it gets put in imOut */
|
||||
if (strcmp(im->mode, "RGBX") == 0
|
||||
|| strcmp(im->mode, "RGBA") == 0) {
|
||||
newPixel[3] = (float) ((UINT8 *) & line[x + offset])[3];
|
||||
}
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = .5;
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < window; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset = pix - effectiveRadius;
|
||||
if (y + offset < 0)
|
||||
offset = -y;
|
||||
else if (y + offset >= im->ysize)
|
||||
offset = im->ysize - y - 1;
|
||||
|
||||
/* pack the channels into an INT32 so we can put them back in
|
||||
the PIL image */
|
||||
newPixelFinals = 0;
|
||||
if (channels == 1) {
|
||||
newPixelFinals = clip(newPixel[0]);
|
||||
} else {
|
||||
/* for RGB, the fourth channel isn't used anyways, so just
|
||||
pack a 0 in there, this saves checking the mode for each
|
||||
pixel. */
|
||||
/* this doesn't work on little-endian machines... fix it! */
|
||||
newPixelFinals =
|
||||
clip(newPixel[0]) | clip(newPixel[1]) << 8 |
|
||||
clip(newPixel[2]) << 16 | clip(newPixel[3]) << 24;
|
||||
}
|
||||
/* set the resulting pixel in imOut */
|
||||
if (channels == 1) {
|
||||
imOut->image8[y][x] = (UINT8) newPixelFinals;
|
||||
} else {
|
||||
imOut->image32[y][x] = newPixelFinals;
|
||||
}
|
||||
}
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
newPixel[channel] +=
|
||||
(buffer
|
||||
[((y + offset) * im->xsize * channels) +
|
||||
(x * channels) + channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
|
||||
if (channels == 1) {
|
||||
imOut->image8[y][x] = (UINT8)(newPixel[0]);
|
||||
} else {
|
||||
/* if the image is RGBX or RGBA, copy the 4th channel data to
|
||||
newPixel, so it gets put in imOut */
|
||||
if (hasAlpha) {
|
||||
newPixel[3] = (float) ((UINT8 *) & im->image32[y][x])[3];
|
||||
}
|
||||
|
||||
/* for RGB, the fourth channel isn't used anyways, so just
|
||||
pack a 0 in there, this saves checking the mode for each
|
||||
pixel. */
|
||||
/* this might don't work on little-endian machines... fix it! */
|
||||
imOut->image32[y][x] =
|
||||
(UINT8)(newPixel[0]) | (UINT8)(newPixel[1]) << 8 |
|
||||
(UINT8)(newPixel[2]) << 16 | (UINT8)(newPixel[3]) << 24;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* free the buffer */
|
||||
|
@ -252,42 +178,46 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
|||
return imOut;
|
||||
}
|
||||
|
||||
Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius)
|
||||
static inline UINT8 clip(double in)
|
||||
{
|
||||
if (in >= 255.0)
|
||||
return (UINT8) 255;
|
||||
if (in <= 0.0)
|
||||
return (UINT8) 0;
|
||||
return (UINT8) (in + 0.5);
|
||||
}
|
||||
|
||||
Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius,
|
||||
float effectiveScale)
|
||||
{
|
||||
int channels = 0;
|
||||
int padding = 0;
|
||||
|
||||
if (strcmp(im->mode, "RGB") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "RGBA") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "RGBX") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "CMYK") == 0) {
|
||||
channels = 4;
|
||||
padding = 0;
|
||||
channels = 4;
|
||||
} else if (strcmp(im->mode, "L") == 0) {
|
||||
channels = 1;
|
||||
padding = 0;
|
||||
channels = 1;
|
||||
} else
|
||||
return ImagingError_ModeError();
|
||||
return ImagingError_ModeError();
|
||||
|
||||
return gblur(im, imOut, radius, channels, padding);
|
||||
return gblur(im, imOut, radius, effectiveScale, channels);
|
||||
}
|
||||
|
||||
Imaging
|
||||
ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
||||
int threshold)
|
||||
int threshold)
|
||||
{
|
||||
ImagingSectionCookie cookie;
|
||||
|
||||
Imaging result;
|
||||
int channel = 0;
|
||||
int channels = 0;
|
||||
int padding = 0;
|
||||
int hasAlpha = 0;
|
||||
|
||||
int x = 0;
|
||||
int y = 0;
|
||||
|
@ -302,28 +232,23 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
|||
INT32 newPixel = 0;
|
||||
|
||||
if (strcmp(im->mode, "RGB") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "RGBA") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "RGBX") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
} else if (strcmp(im->mode, "CMYK") == 0) {
|
||||
channels = 4;
|
||||
padding = 0;
|
||||
channels = 4;
|
||||
} else if (strcmp(im->mode, "L") == 0) {
|
||||
channels = 1;
|
||||
padding = 0;
|
||||
channels = 1;
|
||||
} else
|
||||
return ImagingError_ModeError();
|
||||
return ImagingError_ModeError();
|
||||
|
||||
/* first, do a gaussian blur on the image, putting results in imOut
|
||||
temporarily */
|
||||
result = gblur(im, imOut, radius, channels, padding);
|
||||
result = gblur(im, imOut, radius, 2.6, channels);
|
||||
if (!result)
|
||||
return NULL;
|
||||
return NULL;
|
||||
|
||||
/* now, go through each pixel, compare "normal" pixel to blurred
|
||||
pixel. if the difference is more than threshold values, apply
|
||||
|
@ -332,64 +257,67 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
|||
|
||||
ImagingSectionEnter(&cookie);
|
||||
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
if (channels == 1) {
|
||||
lineIn8 = im->image8[y];
|
||||
lineOut8 = imOut->image8[y];
|
||||
} else {
|
||||
lineIn = im->image32[y];
|
||||
lineOut = imOut->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
newPixel = 0;
|
||||
/* compare in/out pixels, apply sharpening */
|
||||
if (channels == 1) {
|
||||
diff =
|
||||
((UINT8 *) & lineIn8[x])[0] -
|
||||
((UINT8 *) & lineOut8[x])[0];
|
||||
if (abs(diff) > threshold) {
|
||||
/* add the diff*percent to the original pixel */
|
||||
imOut->image8[y][x] =
|
||||
clip((((UINT8 *) & lineIn8[x])[0]) +
|
||||
(diff * ((float) percent) / 100.0));
|
||||
} else {
|
||||
/* newPixel is the same as imIn */
|
||||
imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
|
||||
}
|
||||
}
|
||||
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
|
||||
hasAlpha = 1;
|
||||
}
|
||||
|
||||
else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
|
||||
(((UINT8 *) & lineOut[x])[channel]));
|
||||
if (abs(diff) > threshold) {
|
||||
/* add the diff*percent to the original pixel
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel |
|
||||
clip((float) (((UINT8 *) & lineIn[x])[channel])
|
||||
+
|
||||
(diff *
|
||||
(((float) percent /
|
||||
100.0)))) << (channel * 8);
|
||||
} else {
|
||||
/* newPixel is the same as imIn
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel | ((UINT8 *) & lineIn[x])[channel] <<
|
||||
(channel * 8);
|
||||
}
|
||||
}
|
||||
if (strcmp(im->mode, "RGBX") == 0
|
||||
|| strcmp(im->mode, "RGBA") == 0) {
|
||||
/* preserve the alpha channel
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
|
||||
}
|
||||
imOut->image32[y][x] = newPixel;
|
||||
}
|
||||
}
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
if (channels == 1) {
|
||||
lineIn8 = im->image8[y];
|
||||
lineOut8 = imOut->image8[y];
|
||||
} else {
|
||||
lineIn = im->image32[y];
|
||||
lineOut = imOut->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
newPixel = 0;
|
||||
/* compare in/out pixels, apply sharpening */
|
||||
if (channels == 1) {
|
||||
diff =
|
||||
((UINT8 *) & lineIn8[x])[0] -
|
||||
((UINT8 *) & lineOut8[x])[0];
|
||||
if (abs(diff) > threshold) {
|
||||
/* add the diff*percent to the original pixel */
|
||||
imOut->image8[y][x] =
|
||||
clip((((UINT8 *) & lineIn8[x])[0]) +
|
||||
(diff * ((float) percent) / 100.0));
|
||||
} else {
|
||||
/* newPixel is the same as imIn */
|
||||
imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
|
||||
}
|
||||
}
|
||||
|
||||
else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
|
||||
(((UINT8 *) & lineOut[x])[channel]));
|
||||
if (abs(diff) > threshold) {
|
||||
/* add the diff*percent to the original pixel
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel |
|
||||
clip((float) (((UINT8 *) & lineIn[x])[channel])
|
||||
+
|
||||
(diff *
|
||||
(((float) percent /
|
||||
100.0)))) << (channel * 8);
|
||||
} else {
|
||||
/* newPixel is the same as imIn
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel | ((UINT8 *) & lineIn[x])[channel] <<
|
||||
(channel * 8);
|
||||
}
|
||||
}
|
||||
if (hasAlpha) {
|
||||
/* preserve the alpha channel
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
|
||||
}
|
||||
imOut->image32[y][x] = newPixel;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ImagingSectionLeave(&cookie);
|
||||
|
|
Loading…
Reference in New Issue
Block a user