mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-11-04 01:47:47 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			279 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
Tests for resize functionality.
 | 
						|
"""
 | 
						|
from itertools import permutations
 | 
						|
 | 
						|
import pytest
 | 
						|
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
from .helper import (
 | 
						|
    assert_image_equal,
 | 
						|
    assert_image_equal_tofile,
 | 
						|
    assert_image_similar,
 | 
						|
    hopper,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
class TestImagingCoreResize:
 | 
						|
    def resize(self, im, size, f):
 | 
						|
        # Image class independent version of resize.
 | 
						|
        im.load()
 | 
						|
        return im._new(im.im.resize(size, f))
 | 
						|
 | 
						|
    def test_nearest_mode(self):
 | 
						|
        for mode in [
 | 
						|
            "1",
 | 
						|
            "P",
 | 
						|
            "L",
 | 
						|
            "I",
 | 
						|
            "F",
 | 
						|
            "RGB",
 | 
						|
            "RGBA",
 | 
						|
            "CMYK",
 | 
						|
            "YCbCr",
 | 
						|
            "I;16",
 | 
						|
        ]:  # exotic mode
 | 
						|
            im = hopper(mode)
 | 
						|
            r = self.resize(im, (15, 12), Image.Resampling.NEAREST)
 | 
						|
            assert r.mode == mode
 | 
						|
            assert r.size == (15, 12)
 | 
						|
            assert r.im.bands == im.im.bands
 | 
						|
 | 
						|
    def test_convolution_modes(self):
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            self.resize(hopper("1"), (15, 12), Image.Resampling.BILINEAR)
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            self.resize(hopper("P"), (15, 12), Image.Resampling.BILINEAR)
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            self.resize(hopper("I;16"), (15, 12), Image.Resampling.BILINEAR)
 | 
						|
        for mode in ["L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr"]:
 | 
						|
            im = hopper(mode)
 | 
						|
            r = self.resize(im, (15, 12), Image.Resampling.BILINEAR)
 | 
						|
            assert r.mode == mode
 | 
						|
            assert r.size == (15, 12)
 | 
						|
            assert r.im.bands == im.im.bands
 | 
						|
 | 
						|
    def test_reduce_filters(self):
 | 
						|
        for f in [
 | 
						|
            Image.Resampling.NEAREST,
 | 
						|
            Image.Resampling.BOX,
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
            Image.Resampling.HAMMING,
 | 
						|
            Image.Resampling.BICUBIC,
 | 
						|
            Image.Resampling.LANCZOS,
 | 
						|
        ]:
 | 
						|
            r = self.resize(hopper("RGB"), (15, 12), f)
 | 
						|
            assert r.mode == "RGB"
 | 
						|
            assert r.size == (15, 12)
 | 
						|
 | 
						|
    def test_enlarge_filters(self):
 | 
						|
        for f in [
 | 
						|
            Image.Resampling.NEAREST,
 | 
						|
            Image.Resampling.BOX,
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
            Image.Resampling.HAMMING,
 | 
						|
            Image.Resampling.BICUBIC,
 | 
						|
            Image.Resampling.LANCZOS,
 | 
						|
        ]:
 | 
						|
            r = self.resize(hopper("RGB"), (212, 195), f)
 | 
						|
            assert r.mode == "RGB"
 | 
						|
            assert r.size == (212, 195)
 | 
						|
 | 
						|
    def test_endianness(self):
 | 
						|
        # Make an image with one colored pixel, in one channel.
 | 
						|
        # When resized, that channel should be the same as a GS image.
 | 
						|
        # Other channels should be unaffected.
 | 
						|
        # The R and A channels should not swap, which is indicative of
 | 
						|
        # an endianness issues.
 | 
						|
 | 
						|
        samples = {
 | 
						|
            "blank": Image.new("L", (2, 2), 0),
 | 
						|
            "filled": Image.new("L", (2, 2), 255),
 | 
						|
            "dirty": Image.new("L", (2, 2), 0),
 | 
						|
        }
 | 
						|
        samples["dirty"].putpixel((1, 1), 128)
 | 
						|
 | 
						|
        for f in [
 | 
						|
            Image.Resampling.NEAREST,
 | 
						|
            Image.Resampling.BOX,
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
            Image.Resampling.HAMMING,
 | 
						|
            Image.Resampling.BICUBIC,
 | 
						|
            Image.Resampling.LANCZOS,
 | 
						|
        ]:
 | 
						|
            # samples resized with current filter
 | 
						|
            references = {
 | 
						|
                name: self.resize(ch, (4, 4), f) for name, ch in samples.items()
 | 
						|
            }
 | 
						|
 | 
						|
            for mode, channels_set in [
 | 
						|
                ("RGB", ("blank", "filled", "dirty")),
 | 
						|
                ("RGBA", ("blank", "blank", "filled", "dirty")),
 | 
						|
                ("LA", ("filled", "dirty")),
 | 
						|
            ]:
 | 
						|
                for channels in set(permutations(channels_set)):
 | 
						|
                    # compile image from different channels permutations
 | 
						|
                    im = Image.merge(mode, [samples[ch] for ch in channels])
 | 
						|
                    resized = self.resize(im, (4, 4), f)
 | 
						|
 | 
						|
                    for i, ch in enumerate(resized.split()):
 | 
						|
                        # check what resized channel in image is the same
 | 
						|
                        # as separately resized channel
 | 
						|
                        assert_image_equal(ch, references[channels[i]])
 | 
						|
 | 
						|
    def test_enlarge_zero(self):
 | 
						|
        for f in [
 | 
						|
            Image.Resampling.NEAREST,
 | 
						|
            Image.Resampling.BOX,
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
            Image.Resampling.HAMMING,
 | 
						|
            Image.Resampling.BICUBIC,
 | 
						|
            Image.Resampling.LANCZOS,
 | 
						|
        ]:
 | 
						|
            r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), f)
 | 
						|
            assert r.mode == "RGB"
 | 
						|
            assert r.size == (212, 195)
 | 
						|
            assert r.getdata()[0] == (0, 0, 0)
 | 
						|
 | 
						|
    def test_unknown_filter(self):
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            self.resize(hopper(), (10, 10), 9)
 | 
						|
 | 
						|
    def test_cross_platform(self, tmp_path):
 | 
						|
        # This test is intended for only check for consistent behaviour across
 | 
						|
        # platforms. So if a future Pillow change requires that the test file
 | 
						|
        # be updated, that is okay.
 | 
						|
        im = hopper().resize((64, 64))
 | 
						|
        temp_file = str(tmp_path / "temp.gif")
 | 
						|
        im.save(temp_file)
 | 
						|
 | 
						|
        with Image.open(temp_file) as reloaded:
 | 
						|
            assert_image_equal_tofile(reloaded, "Tests/images/hopper_resized.gif")
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def gradients_image():
 | 
						|
    with Image.open("Tests/images/radial_gradients.png") as im:
 | 
						|
        im.load()
 | 
						|
    try:
 | 
						|
        yield im
 | 
						|
    finally:
 | 
						|
        im.close()
 | 
						|
 | 
						|
 | 
						|
class TestReducingGapResize:
 | 
						|
    def test_reducing_gap_values(self, gradients_image):
 | 
						|
        ref = gradients_image.resize(
 | 
						|
            (52, 34), Image.Resampling.BICUBIC, reducing_gap=None
 | 
						|
        )
 | 
						|
        im = gradients_image.resize((52, 34), Image.Resampling.BICUBIC)
 | 
						|
        assert_image_equal(ref, im)
 | 
						|
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            gradients_image.resize((52, 34), Image.Resampling.BICUBIC, reducing_gap=0)
 | 
						|
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            gradients_image.resize(
 | 
						|
                (52, 34), Image.Resampling.BICUBIC, reducing_gap=0.99
 | 
						|
            )
 | 
						|
 | 
						|
    def test_reducing_gap_1(self, gradients_image):
 | 
						|
        for box, epsilon in [
 | 
						|
            (None, 4),
 | 
						|
            ((1.1, 2.2, 510.8, 510.9), 4),
 | 
						|
            ((3, 10, 410, 256), 10),
 | 
						|
        ]:
 | 
						|
            ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
 | 
						|
            im = gradients_image.resize(
 | 
						|
                (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=1.0
 | 
						|
            )
 | 
						|
 | 
						|
            with pytest.raises(AssertionError):
 | 
						|
                assert_image_equal(ref, im)
 | 
						|
 | 
						|
            assert_image_similar(ref, im, epsilon)
 | 
						|
 | 
						|
    def test_reducing_gap_2(self, gradients_image):
 | 
						|
        for box, epsilon in [
 | 
						|
            (None, 1.5),
 | 
						|
            ((1.1, 2.2, 510.8, 510.9), 1.5),
 | 
						|
            ((3, 10, 410, 256), 1),
 | 
						|
        ]:
 | 
						|
            ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
 | 
						|
            im = gradients_image.resize(
 | 
						|
                (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=2.0
 | 
						|
            )
 | 
						|
 | 
						|
            with pytest.raises(AssertionError):
 | 
						|
                assert_image_equal(ref, im)
 | 
						|
 | 
						|
            assert_image_similar(ref, im, epsilon)
 | 
						|
 | 
						|
    def test_reducing_gap_3(self, gradients_image):
 | 
						|
        for box, epsilon in [
 | 
						|
            (None, 1),
 | 
						|
            ((1.1, 2.2, 510.8, 510.9), 1),
 | 
						|
            ((3, 10, 410, 256), 0.5),
 | 
						|
        ]:
 | 
						|
            ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
 | 
						|
            im = gradients_image.resize(
 | 
						|
                (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=3.0
 | 
						|
            )
 | 
						|
 | 
						|
            with pytest.raises(AssertionError):
 | 
						|
                assert_image_equal(ref, im)
 | 
						|
 | 
						|
            assert_image_similar(ref, im, epsilon)
 | 
						|
 | 
						|
    def test_reducing_gap_8(self, gradients_image):
 | 
						|
        for box in [None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)]:
 | 
						|
            ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
 | 
						|
            im = gradients_image.resize(
 | 
						|
                (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=8.0
 | 
						|
            )
 | 
						|
 | 
						|
            assert_image_equal(ref, im)
 | 
						|
 | 
						|
    def test_box_filter(self, gradients_image):
 | 
						|
        for box, epsilon in [
 | 
						|
            ((0, 0, 512, 512), 5.5),
 | 
						|
            ((0.9, 1.7, 128, 128), 9.5),
 | 
						|
        ]:
 | 
						|
            ref = gradients_image.resize((52, 34), Image.Resampling.BOX, box=box)
 | 
						|
            im = gradients_image.resize(
 | 
						|
                (52, 34), Image.Resampling.BOX, box=box, reducing_gap=1.0
 | 
						|
            )
 | 
						|
 | 
						|
            assert_image_similar(ref, im, epsilon)
 | 
						|
 | 
						|
 | 
						|
class TestImageResize:
 | 
						|
    def test_resize(self):
 | 
						|
        def resize(mode, size):
 | 
						|
            out = hopper(mode).resize(size)
 | 
						|
            assert out.mode == mode
 | 
						|
            assert out.size == size
 | 
						|
 | 
						|
        for mode in "1", "P", "L", "RGB", "I", "F":
 | 
						|
            resize(mode, (112, 103))
 | 
						|
            resize(mode, (188, 214))
 | 
						|
 | 
						|
        # Test unknown resampling filter
 | 
						|
        with hopper() as im:
 | 
						|
            with pytest.raises(ValueError):
 | 
						|
                im.resize((10, 10), "unknown")
 | 
						|
 | 
						|
    def test_default_filter(self):
 | 
						|
        for mode in "L", "RGB", "I", "F":
 | 
						|
            im = hopper(mode)
 | 
						|
            assert im.resize((20, 20), Image.Resampling.BICUBIC) == im.resize((20, 20))
 | 
						|
 | 
						|
        for mode in "1", "P":
 | 
						|
            im = hopper(mode)
 | 
						|
            assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20))
 | 
						|
 | 
						|
        for mode in "I;16", "I;16L", "I;16B", "BGR;15", "BGR;16":
 | 
						|
            im = hopper(mode)
 | 
						|
            assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20))
 |