spaCy/spacy/morphology.pyx

254 lines
9.4 KiB
Cython
Raw Permalink Normal View History

# cython: infer_types
# cython: profile=False
2020-02-28 14:20:23 +03:00
import warnings
2023-06-26 12:41:03 +03:00
from typing import Dict, List, Optional, Tuple, Union
import numpy
from cython.operator cimport dereference as deref
from libcpp.memory cimport shared_ptr
from . import symbols
2023-06-26 12:41:03 +03:00
from .errors import Warnings
2015-08-28 00:11:51 +03:00
2018-09-25 00:57:41 +03:00
cdef class Morphology:
"""Store the possible morphological analyses for a language, and index them
2018-09-25 00:57:41 +03:00
by hash.
To save space on each token, tokens only know the hash of their
morphological analysis, so queries of morphological attributes are delegated
2018-09-25 00:57:41 +03:00
to this class.
"""
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
FEATURE_SEP = "|"
FIELD_SEP = "="
VALUE_SEP = ","
# not an empty string so we can distinguish unset morph from empty morph
EMPTY_MORPH = symbols.NAMES[symbols._]
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
Add Lemmatizer and simplify related components (#5848) * Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
2020-08-07 16:27:13 +03:00
def __init__(self, StringStore strings):
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
self.strings = strings
2019-08-29 22:17:34 +03:00
2018-09-25 11:57:33 +03:00
def __reduce__(self):
Add Lemmatizer and simplify related components (#5848) * Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
2020-08-07 16:27:13 +03:00
tags = set([self.get(self.strings[s]) for s in self.strings])
tags -= set([""])
return (unpickle_morphology, (self.strings, sorted(tags)), None, None)
2018-09-25 11:57:33 +03:00
cdef shared_ptr[MorphAnalysisC] _lookup_tag(self, hash_t tag_hash):
match = self.tags.find(tag_hash)
if match != self.tags.const_end():
return deref(match).second
else:
return shared_ptr[MorphAnalysisC]()
def _normalize_attr(self, attr_key : Union[int, str], attr_value : Union[int, str]) -> Optional[Tuple[str, Union[str, List[str]]]]:
if isinstance(attr_key, (int, str)) and isinstance(attr_value, (int, str)):
attr_key = self.strings.as_string(attr_key)
attr_value = self.strings.as_string(attr_value)
# Preserve multiple values as a list
if self.VALUE_SEP in attr_value:
values = attr_value.split(self.VALUE_SEP)
values.sort()
attr_value = values
else:
warnings.warn(Warnings.W100.format(feature={attr_key: attr_value}))
return None
return attr_key, attr_value
def _str_to_normalized_feat_dict(self, feats: str) -> Dict[str, str]:
if not feats or feats == self.EMPTY_MORPH:
return {}
out = []
for feat in feats.split(self.FEATURE_SEP):
field, values = feat.split(self.FIELD_SEP, 1)
normalized_attr = self._normalize_attr(field, values)
if normalized_attr is None:
continue
out.append((normalized_attr[0], normalized_attr[1]))
out.sort(key=lambda x: x[0])
return dict(out)
def _dict_to_normalized_feat_dict(self, feats: Dict[Union[int, str], Union[int, str]]) -> Dict[str, str]:
out = []
for field, values in feats.items():
normalized_attr = self._normalize_attr(field, values)
if normalized_attr is None:
continue
out.append((normalized_attr[0], normalized_attr[1]))
out.sort(key=lambda x: x[0])
return dict(out)
def _normalized_feat_dict_to_str(self, feats: Dict[str, str]) -> str:
norm_feats_string = self.FEATURE_SEP.join([
2023-07-19 18:41:29 +03:00
self.FIELD_SEP.join([field, self.VALUE_SEP.join(values) if isinstance(values, list) else values])
for field, values in feats.items()
2023-07-19 18:41:29 +03:00
])
return norm_feats_string or self.EMPTY_MORPH
cdef hash_t _add(self, features):
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
"""Insert a morphological analysis in the morphology table, if not
already present. The morphological analysis may be provided in the UD
FEATS format as a string or in the tag map dict format.
Returns the hash of the new analysis.
"""
cdef hash_t tag_hash = 0
cdef shared_ptr[MorphAnalysisC] tag
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
if isinstance(features, str):
if features == "":
features = self.EMPTY_MORPH
tag_hash = self.strings[features]
tag = self._lookup_tag(tag_hash)
if tag:
return deref(tag).key
features = self._str_to_normalized_feat_dict(features)
elif isinstance(features, dict):
features = self._dict_to_normalized_feat_dict(features)
else:
2020-06-03 15:37:09 +03:00
warnings.warn(Warnings.W100.format(feature=features))
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
features = {}
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
# the hash key for the tag is either the hash of the normalized UFEATS
# string or the hash of an empty placeholder
norm_feats_string = self._normalized_feat_dict_to_str(features)
tag_hash = self.strings.add(norm_feats_string)
tag = self._lookup_tag(tag_hash)
if tag:
return deref(tag).key
self._intern_morph_tag(tag_hash, features)
return tag_hash
cdef void _intern_morph_tag(self, hash_t tag_key, feats):
# intified ("Field", "Field=Value") pairs where fields with multiple values have
# been split into individual tuples, e.g.:
# [("Field1", "Field1=Value1"), ("Field1", "Field1=Value2"),
# ("Field2", "Field2=Value3")]
field_feature_pairs = []
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
# Feat dict is normalized at this point.
for field, values in feats.items():
field_key = self.strings.add(field)
if isinstance(values, list):
for value in values:
value_key = self.strings.add(field + self.FIELD_SEP + value)
field_feature_pairs.append((field_key, value_key))
else:
# We could box scalar values into a list and use a common
# code path to generate features but that incurs a small
# but measurable allocation/iteration overhead (as this
# branch is taken often enough).
value_key = self.strings.add(field + self.FIELD_SEP + values)
field_feature_pairs.append((field_key, value_key))
num_features = len(field_feature_pairs)
cdef shared_ptr[MorphAnalysisC] tag = shared_ptr[MorphAnalysisC](new MorphAnalysisC())
deref(tag).key = tag_key
deref(tag).features.resize(num_features)
for i in range(num_features):
deref(tag).features[i].field = field_feature_pairs[i][0]
deref(tag).features[i].value = field_feature_pairs[i][1]
self.tags[tag_key] = tag
cdef str get_morph_str(self, hash_t morph_key):
cdef shared_ptr[MorphAnalysisC] tag = self._lookup_tag(morph_key)
if not tag:
return ""
else:
return self.strings[deref(tag).key]
cdef shared_ptr[MorphAnalysisC] get_morph_c(self, hash_t morph_key):
return self._lookup_tag(morph_key)
cdef str _normalize_features(self, features):
"""Create a normalized FEATS string from a features string or dict.
features (Union[dict, str]): Features as dict or UFEATS string.
RETURNS (str): Features as normalized UFEATS string.
"""
if isinstance(features, str):
features = self._str_to_normalized_feat_dict(features)
elif isinstance(features, dict):
features = self._dict_to_normalized_feat_dict(features)
else:
warnings.warn(Warnings.W100.format(feature=features))
features = {}
return self._normalized_feat_dict_to_str(features)
def add(self, features):
return self._add(features)
def get(self, morph_key):
return self.get_morph_str(morph_key)
def normalize_features(self, features):
return self._normalize_features(features)
2018-09-25 21:53:24 +03:00
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
@staticmethod
def feats_to_dict(feats, *, sort_values=True):
if not feats or feats == Morphology.EMPTY_MORPH:
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
return {}
out = {}
for feat in feats.split(Morphology.FEATURE_SEP):
field, values = feat.split(Morphology.FIELD_SEP, 1)
if sort_values:
values = values.split(Morphology.VALUE_SEP)
values.sort()
values = Morphology.VALUE_SEP.join(values)
out[field] = values
return out
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
@staticmethod
def dict_to_feats(feats_dict):
if len(feats_dict) == 0:
return ""
return Morphology.FEATURE_SEP.join(sorted([Morphology.FIELD_SEP.join([field, Morphology.VALUE_SEP.join(sorted(values.split(Morphology.VALUE_SEP)))]) for field, values in feats_dict.items()]))
cdef int check_feature(const shared_ptr[MorphAnalysisC] morph, attr_t feature) nogil:
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
cdef int i
for i in range(deref(morph).features.size()):
if deref(morph).features[i].value == feature:
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
return True
return False
cdef list list_features(const shared_ptr[MorphAnalysisC] morph):
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
cdef int i
features = []
for i in range(deref(morph).features.size()):
features.append(deref(morph).features[i].value)
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
return features
cdef np.ndarray get_by_field(const shared_ptr[MorphAnalysisC] morph, attr_t field):
cdef np.ndarray results = numpy.zeros((deref(morph).features.size(),), dtype="uint64")
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
n = get_n_by_field(<uint64_t*>results.data, morph, field)
return results[:n]
cdef int get_n_by_field(attr_t* results, const shared_ptr[MorphAnalysisC] morph, attr_t field) nogil:
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
cdef int n_results = 0
cdef int i
for i in range(deref(morph).features.size()):
if deref(morph).features[i].field == field:
results[n_results] = deref(morph).features[i].value
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
n_results += 1
return n_results
Add Lemmatizer and simplify related components (#5848) * Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
2020-08-07 16:27:13 +03:00
Add Lemmatizer and simplify related components (#5848) * Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
2020-08-07 16:27:13 +03:00
def unpickle_morphology(strings, tags):
cdef Morphology morphology = Morphology(strings)
for tag in tags:
morphology.add(tag)
return morphology