2019-02-08 17:51:13 +03:00
|
|
|
import pytest
|
2019-02-24 22:31:38 +03:00
|
|
|
from spacy import displacy
|
2020-09-09 11:31:03 +03:00
|
|
|
from spacy.training import Example
|
2019-02-08 17:51:13 +03:00
|
|
|
from spacy.lang.en import English
|
|
|
|
from spacy.lang.ja import Japanese
|
|
|
|
from spacy.lang.xx import MultiLanguage
|
|
|
|
from spacy.language import Language
|
|
|
|
from spacy.matcher import Matcher
|
2019-02-24 22:31:38 +03:00
|
|
|
from spacy.tokens import Doc, Span
|
2019-02-08 17:51:13 +03:00
|
|
|
from spacy.vocab import Vocab
|
2019-02-24 22:31:38 +03:00
|
|
|
from spacy.compat import pickle
|
2019-02-08 17:51:13 +03:00
|
|
|
import numpy
|
2019-02-24 23:03:39 +03:00
|
|
|
import random
|
2019-02-08 17:51:13 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_issue2564():
|
2020-09-17 01:14:01 +03:00
|
|
|
"""Test the tagger sets has_annotation("TAG") correctly when used via Language.pipe."""
|
2019-02-08 17:51:13 +03:00
|
|
|
nlp = Language()
|
2020-07-22 14:42:59 +03:00
|
|
|
tagger = nlp.add_pipe("tagger")
|
2020-08-07 16:27:13 +03:00
|
|
|
tagger.add_label("A")
|
2020-09-28 22:35:09 +03:00
|
|
|
nlp.initialize()
|
2019-02-08 17:51:13 +03:00
|
|
|
doc = nlp("hello world")
|
2020-09-17 01:14:01 +03:00
|
|
|
assert doc.has_annotation("TAG")
|
2019-02-08 17:51:13 +03:00
|
|
|
docs = nlp.pipe(["hello", "world"])
|
|
|
|
piped_doc = next(docs)
|
2020-09-17 01:14:01 +03:00
|
|
|
assert piped_doc.has_annotation("TAG")
|
2019-02-08 17:51:13 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_issue2569(en_tokenizer):
|
|
|
|
"""Test that operator + is greedy."""
|
|
|
|
doc = en_tokenizer("It is May 15, 1993.")
|
|
|
|
doc.ents = [Span(doc, 2, 6, label=doc.vocab.strings["DATE"])]
|
|
|
|
matcher = Matcher(doc.vocab)
|
2019-10-25 23:21:08 +03:00
|
|
|
matcher.add("RULE", [[{"ENT_TYPE": "DATE", "OP": "+"}]])
|
2019-02-08 17:51:13 +03:00
|
|
|
matched = [doc[start:end] for _, start, end in matcher(doc)]
|
|
|
|
matched = sorted(matched, key=len, reverse=True)
|
|
|
|
assert len(matched) == 10
|
|
|
|
assert len(matched[0]) == 4
|
|
|
|
assert matched[0].text == "May 15, 1993"
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"text",
|
|
|
|
[
|
|
|
|
"ABLEItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume TABLE ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume",
|
|
|
|
"oow.jspsearch.eventoracleopenworldsearch.technologyoraclesolarissearch.technologystoragesearch.technologylinuxsearch.technologyserverssearch.technologyvirtualizationsearch.technologyengineeredsystemspcodewwmkmppscem:",
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_issue2626_2835(en_tokenizer, text):
|
|
|
|
"""Check that sentence doesn't cause an infinite loop in the tokenizer."""
|
|
|
|
doc = en_tokenizer(text)
|
|
|
|
assert doc
|
|
|
|
|
|
|
|
|
2019-02-24 22:31:38 +03:00
|
|
|
def test_issue2656(en_tokenizer):
|
2020-07-05 16:49:06 +03:00
|
|
|
"""Test that tokenizer correctly splits off punctuation after numbers with
|
2019-02-24 22:31:38 +03:00
|
|
|
decimal points.
|
|
|
|
"""
|
|
|
|
doc = en_tokenizer("I went for 40.3, and got home by 10.0.")
|
|
|
|
assert len(doc) == 11
|
|
|
|
assert doc[0].text == "I"
|
|
|
|
assert doc[1].text == "went"
|
|
|
|
assert doc[2].text == "for"
|
|
|
|
assert doc[3].text == "40.3"
|
|
|
|
assert doc[4].text == ","
|
|
|
|
assert doc[5].text == "and"
|
|
|
|
assert doc[6].text == "got"
|
|
|
|
assert doc[7].text == "home"
|
|
|
|
assert doc[8].text == "by"
|
|
|
|
assert doc[9].text == "10.0"
|
|
|
|
assert doc[10].text == "."
|
|
|
|
|
|
|
|
|
2019-02-08 17:51:13 +03:00
|
|
|
def test_issue2671():
|
|
|
|
"""Ensure the correct entity ID is returned for matches with quantifiers.
|
|
|
|
See also #2675
|
|
|
|
"""
|
|
|
|
nlp = English()
|
|
|
|
matcher = Matcher(nlp.vocab)
|
|
|
|
pattern_id = "test_pattern"
|
|
|
|
pattern = [
|
|
|
|
{"LOWER": "high"},
|
|
|
|
{"IS_PUNCT": True, "OP": "?"},
|
|
|
|
{"LOWER": "adrenaline"},
|
|
|
|
]
|
2019-10-25 23:21:08 +03:00
|
|
|
matcher.add(pattern_id, [pattern])
|
2019-02-08 17:51:13 +03:00
|
|
|
doc1 = nlp("This is a high-adrenaline situation.")
|
|
|
|
doc2 = nlp("This is a high adrenaline situation.")
|
|
|
|
matches1 = matcher(doc1)
|
|
|
|
for match_id, start, end in matches1:
|
|
|
|
assert nlp.vocab.strings[match_id] == pattern_id
|
|
|
|
matches2 = matcher(doc2)
|
|
|
|
for match_id, start, end in matches2:
|
|
|
|
assert nlp.vocab.strings[match_id] == pattern_id
|
|
|
|
|
|
|
|
|
2019-02-24 22:31:38 +03:00
|
|
|
def test_issue2728(en_vocab):
|
|
|
|
"""Test that displaCy ENT visualizer escapes HTML correctly."""
|
|
|
|
doc = Doc(en_vocab, words=["test", "<RELEASE>", "test"])
|
|
|
|
doc.ents = [Span(doc, 0, 1, label="TEST")]
|
|
|
|
html = displacy.render(doc, style="ent")
|
|
|
|
assert "<RELEASE>" in html
|
|
|
|
doc.ents = [Span(doc, 1, 2, label="TEST")]
|
|
|
|
html = displacy.render(doc, style="ent")
|
|
|
|
assert "<RELEASE>" in html
|
|
|
|
|
|
|
|
|
2019-02-08 17:51:13 +03:00
|
|
|
def test_issue2754(en_tokenizer):
|
|
|
|
"""Test that words like 'a' and 'a.m.' don't get exceptional norm values."""
|
|
|
|
a = en_tokenizer("a")
|
|
|
|
assert a[0].norm_ == "a"
|
|
|
|
am = en_tokenizer("am")
|
|
|
|
assert am[0].norm_ == "am"
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue2772(en_vocab):
|
|
|
|
"""Test that deprojectivization doesn't mess up sentence boundaries."""
|
2020-09-21 21:43:54 +03:00
|
|
|
# fmt: off
|
|
|
|
words = ["When", "we", "write", "or", "communicate", "virtually", ",", "we", "can", "hide", "our", "true", "feelings", "."]
|
|
|
|
# fmt: on
|
2019-02-08 17:51:13 +03:00
|
|
|
# A tree with a non-projective (i.e. crossing) arc
|
|
|
|
# The arcs (0, 4) and (2, 9) cross.
|
2020-09-21 21:43:54 +03:00
|
|
|
heads = [4, 2, 9, 2, 2, 4, 9, 9, 9, 9, 12, 12, 9, 9]
|
2019-02-08 17:51:13 +03:00
|
|
|
deps = ["dep"] * len(heads)
|
2020-09-21 21:43:54 +03:00
|
|
|
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
2020-09-17 01:14:01 +03:00
|
|
|
assert doc[1].is_sent_start is False
|
2019-02-08 17:51:13 +03:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["-0.23", "+123,456", "±1"])
|
|
|
|
@pytest.mark.parametrize("lang_cls", [English, MultiLanguage])
|
|
|
|
def test_issue2782(text, lang_cls):
|
|
|
|
"""Check that like_num handles + and - before number."""
|
|
|
|
nlp = lang_cls()
|
|
|
|
doc = nlp(text)
|
|
|
|
assert len(doc) == 1
|
|
|
|
assert doc[0].like_num
|
|
|
|
|
|
|
|
|
2019-02-24 23:03:39 +03:00
|
|
|
def test_issue2800():
|
|
|
|
"""Test issue that arises when too many labels are added to NER model.
|
|
|
|
Used to cause segfault.
|
|
|
|
"""
|
2020-07-06 14:02:36 +03:00
|
|
|
nlp = English()
|
2019-02-24 23:03:39 +03:00
|
|
|
train_data = []
|
2020-07-06 15:05:59 +03:00
|
|
|
train_data.extend(
|
|
|
|
[Example.from_dict(nlp.make_doc("One sentence"), {"entities": []})]
|
|
|
|
)
|
2019-02-24 23:03:39 +03:00
|
|
|
entity_types = [str(i) for i in range(1000)]
|
2020-07-22 14:42:59 +03:00
|
|
|
ner = nlp.add_pipe("ner")
|
2019-02-24 23:03:39 +03:00
|
|
|
for entity_type in list(entity_types):
|
|
|
|
ner.add_label(entity_type)
|
2020-09-28 22:35:09 +03:00
|
|
|
optimizer = nlp.initialize()
|
2019-02-24 23:03:39 +03:00
|
|
|
for i in range(20):
|
|
|
|
losses = {}
|
|
|
|
random.shuffle(train_data)
|
2020-07-06 14:02:36 +03:00
|
|
|
for example in train_data:
|
|
|
|
nlp.update([example], sgd=optimizer, losses=losses, drop=0.5)
|
2019-02-24 23:03:39 +03:00
|
|
|
|
|
|
|
|
2019-02-24 22:31:38 +03:00
|
|
|
def test_issue2822(it_tokenizer):
|
|
|
|
"""Test that the abbreviation of poco is kept as one word."""
|
|
|
|
doc = it_tokenizer("Vuoi un po' di zucchero?")
|
|
|
|
assert len(doc) == 6
|
|
|
|
assert doc[0].text == "Vuoi"
|
|
|
|
assert doc[1].text == "un"
|
|
|
|
assert doc[2].text == "po'"
|
|
|
|
assert doc[3].text == "di"
|
|
|
|
assert doc[4].text == "zucchero"
|
|
|
|
assert doc[5].text == "?"
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue2833(en_vocab):
|
|
|
|
"""Test that a custom error is raised if a token or span is pickled."""
|
|
|
|
doc = Doc(en_vocab, words=["Hello", "world"])
|
|
|
|
with pytest.raises(NotImplementedError):
|
|
|
|
pickle.dumps(doc[0])
|
|
|
|
with pytest.raises(NotImplementedError):
|
|
|
|
pickle.dumps(doc[0:2])
|
|
|
|
|
|
|
|
|
2019-02-08 17:51:13 +03:00
|
|
|
def test_issue2871():
|
|
|
|
"""Test that vectors recover the correct key for spaCy reserved words."""
|
|
|
|
words = ["dog", "cat", "SUFFIX"]
|
2019-09-16 16:16:54 +03:00
|
|
|
vocab = Vocab(vectors_name="test_issue2871")
|
2019-02-08 17:51:13 +03:00
|
|
|
vocab.vectors.resize(shape=(3, 10))
|
|
|
|
vector_data = numpy.zeros((3, 10), dtype="f")
|
|
|
|
for word in words:
|
|
|
|
_ = vocab[word] # noqa: F841
|
|
|
|
vocab.set_vector(word, vector_data[0])
|
|
|
|
vocab.vectors.name = "dummy_vectors"
|
|
|
|
assert vocab["dog"].rank == 0
|
|
|
|
assert vocab["cat"].rank == 1
|
|
|
|
assert vocab["SUFFIX"].rank == 2
|
|
|
|
assert vocab.vectors.find(key="dog") == 0
|
|
|
|
assert vocab.vectors.find(key="cat") == 1
|
|
|
|
assert vocab.vectors.find(key="SUFFIX") == 2
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue2901():
|
|
|
|
"""Test that `nlp` doesn't fail."""
|
|
|
|
try:
|
|
|
|
nlp = Japanese()
|
|
|
|
except ImportError:
|
|
|
|
pytest.skip()
|
|
|
|
|
|
|
|
doc = nlp("pythonが大好きです")
|
|
|
|
assert doc
|
2019-02-24 22:31:38 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_issue2926(fr_tokenizer):
|
|
|
|
"""Test that the tokenizer correctly splits tokens separated by a slash (/)
|
|
|
|
ending in a digit.
|
|
|
|
"""
|
|
|
|
doc = fr_tokenizer("Learn html5/css3/javascript/jquery")
|
|
|
|
assert len(doc) == 8
|
|
|
|
assert doc[0].text == "Learn"
|
|
|
|
assert doc[1].text == "html5"
|
|
|
|
assert doc[2].text == "/"
|
|
|
|
assert doc[3].text == "css3"
|
|
|
|
assert doc[4].text == "/"
|
|
|
|
assert doc[5].text == "javascript"
|
|
|
|
assert doc[6].text == "/"
|
|
|
|
assert doc[7].text == "jquery"
|