spaCy/spacy/tests/pipeline/test_entity_linker.py

1078 lines
40 KiB
Python
Raw Normal View History

from typing import Callable, Iterable
import pytest
from numpy.testing import assert_equal
from spacy import registry, util
from spacy.attrs import ENT_KB_ID
from spacy.compat import pickle
from spacy.kb import Candidate, KnowledgeBase, get_candidates
from spacy.lang.en import English
from spacy.ml import load_kb
Fix entity linker batching (#9669) * Partial fix of entity linker batching * Add import * Better name * Add `use_gold_ents` option, docs * Change to v2, create stub v1, update docs etc. * Fix error type Honestly no idea what the right type to use here is. ConfigValidationError seems wrong. Maybe a NotImplementedError? * Make mypy happy * Add hacky fix for init issue * Add legacy pipeline entity linker * Fix references to class name * Add __init__.py for legacy * Attempted fix for loss issue * Remove placeholder V1 * formatting * slightly more interesting train data * Handle batches with no usable examples This adds a test for batches that have docs but not entities, and a check in the component that detects such cases and skips the update step as thought the batch were empty. * Remove todo about data verification Check for empty data was moved further up so this should be OK now - the case in question shouldn't be possible. * Fix gradient calculation The model doesn't know which entities are not in the kb, so it generates embeddings for the context of all of them. However, the loss does know which entities aren't in the kb, and it ignores them, as there's no sensible gradient. This has the issue that the gradient will not be calculated for some of the input embeddings, which causes a dimension mismatch in backprop. That should have caused a clear error, but with numpyops it was causing nans to happen, which is another problem that should be addressed separately. This commit changes the loss to give a zero gradient for entities not in the kb. * add failing test for v1 EL legacy architecture * Add nasty but simple working check for legacy arch * Clarify why init hack works the way it does * Clarify use_gold_ents use case * Fix use gold ents related handling * Add tests for no gold ents and fix other tests * Use aligned ents function (not working) This doesn't actually work because the "aligned" ents are gold-only. But if I have a different function that returns the intersection, *then* this will work as desired. * Use proper matching ent check This changes the process when gold ents are not used so that the intersection of ents in the pred and gold is used. * Move get_matching_ents to Example * Use model attribute to check for legacy arch * Rename flag * bump spacy-legacy to lower 3.0.9 Co-authored-by: svlandeg <svlandeg@github.com>
2022-03-04 11:17:36 +03:00
from spacy.pipeline import EntityLinker
from spacy.pipeline.legacy import EntityLinker_v1
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from spacy.scorer import Scorer
from spacy.tests.util import make_tempdir
from spacy.tokens import Span
from spacy.training import Example
from spacy.util import ensure_path
from spacy.vocab import Vocab
2019-03-22 01:17:25 +03:00
@pytest.fixture
def nlp():
return English()
2019-07-17 18:18:26 +03:00
def assert_almost_equal(a, b):
delta = 0.0001
assert a - delta <= b <= a + delta
@pytest.mark.issue(4674)
def test_issue4674():
"""Test that setting entities with overlapping identifiers does not mess up IO"""
nlp = English()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
vector1 = [0.9, 1.1, 1.01]
vector2 = [1.8, 2.25, 2.01]
with pytest.warns(UserWarning):
kb.set_entities(
entity_list=["Q1", "Q1"],
freq_list=[32, 111],
vector_list=[vector1, vector2],
)
assert kb.get_size_entities() == 1
# dumping to file & loading back in
with make_tempdir() as d:
dir_path = ensure_path(d)
if not dir_path.exists():
dir_path.mkdir()
file_path = dir_path / "kb"
kb.to_disk(str(file_path))
kb2 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb2.from_disk(str(file_path))
assert kb2.get_size_entities() == 1
@pytest.mark.issue(6730)
def test_issue6730(en_vocab):
"""Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
from spacy.kb import KnowledgeBase
kb = KnowledgeBase(en_vocab, entity_vector_length=3)
kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
with pytest.raises(ValueError):
kb.add_alias(alias="", entities=["1"], probabilities=[0.4])
assert kb.contains_alias("") is False
kb.add_alias(alias="x", entities=["1"], probabilities=[0.2])
kb.add_alias(alias="y", entities=["1"], probabilities=[0.1])
with make_tempdir() as tmp_dir:
kb.to_disk(tmp_dir)
kb.from_disk(tmp_dir)
assert kb.get_size_aliases() == 2
assert set(kb.get_alias_strings()) == {"x", "y"}
@pytest.mark.issue(7065)
def test_issue7065():
text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival."
nlp = English()
nlp.add_pipe("sentencizer")
ruler = nlp.add_pipe("entity_ruler")
patterns = [
{
"label": "THING",
"pattern": [
{"LOWER": "symphony"},
{"LOWER": "no"},
{"LOWER": "."},
{"LOWER": "8"},
],
}
]
ruler.add_patterns(patterns)
doc = nlp(text)
sentences = [s for s in doc.sents]
assert len(sentences) == 2
sent0 = sentences[0]
ent = doc.ents[0]
assert ent.start < sent0.end < ent.end
assert sentences.index(ent.sent) == 0
@pytest.mark.issue(7065)
def test_issue7065_b():
# Test that the NEL doesn't crash when an entity crosses a sentence boundary
nlp = English()
vector_length = 3
nlp.add_pipe("sentencizer")
text = "Mahler 's Symphony No. 8 was beautiful."
entities = [(0, 6, "PERSON"), (10, 24, "WORK")]
links = {
(0, 6): {"Q7304": 1.0, "Q270853": 0.0},
(10, 24): {"Q7304": 0.0, "Q270853": 1.0},
}
sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0]
doc = nlp(text)
example = Example.from_dict(
doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
)
train_examples = [example]
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias(
alias="No. 8",
entities=["Q270853"],
probabilities=[1.0],
)
mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias(
alias="Mahler",
entities=["Q7304"],
probabilities=[1.0],
)
return mykb
# Create the Entity Linker component and add it to the pipeline
entity_linker = nlp.add_pipe("entity_linker", last=True)
entity_linker.set_kb(create_kb)
# train the NEL pipe
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(2):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
# Add a custom rule-based component to mimick NER
patterns = [
{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]},
{
"label": "WORK",
"pattern": [
{"LOWER": "symphony"},
{"LOWER": "no"},
{"LOWER": "."},
{"LOWER": "8"},
],
},
]
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
ruler.add_patterns(patterns)
# test the trained model - this should not throw E148
doc = nlp(text)
assert doc
Fix entity linker batching (#9669) * Partial fix of entity linker batching * Add import * Better name * Add `use_gold_ents` option, docs * Change to v2, create stub v1, update docs etc. * Fix error type Honestly no idea what the right type to use here is. ConfigValidationError seems wrong. Maybe a NotImplementedError? * Make mypy happy * Add hacky fix for init issue * Add legacy pipeline entity linker * Fix references to class name * Add __init__.py for legacy * Attempted fix for loss issue * Remove placeholder V1 * formatting * slightly more interesting train data * Handle batches with no usable examples This adds a test for batches that have docs but not entities, and a check in the component that detects such cases and skips the update step as thought the batch were empty. * Remove todo about data verification Check for empty data was moved further up so this should be OK now - the case in question shouldn't be possible. * Fix gradient calculation The model doesn't know which entities are not in the kb, so it generates embeddings for the context of all of them. However, the loss does know which entities aren't in the kb, and it ignores them, as there's no sensible gradient. This has the issue that the gradient will not be calculated for some of the input embeddings, which causes a dimension mismatch in backprop. That should have caused a clear error, but with numpyops it was causing nans to happen, which is another problem that should be addressed separately. This commit changes the loss to give a zero gradient for entities not in the kb. * add failing test for v1 EL legacy architecture * Add nasty but simple working check for legacy arch * Clarify why init hack works the way it does * Clarify use_gold_ents use case * Fix use gold ents related handling * Add tests for no gold ents and fix other tests * Use aligned ents function (not working) This doesn't actually work because the "aligned" ents are gold-only. But if I have a different function that returns the intersection, *then* this will work as desired. * Use proper matching ent check This changes the process when gold ents are not used so that the intersection of ents in the pred and gold is used. * Move get_matching_ents to Example * Use model attribute to check for legacy arch * Rename flag * bump spacy-legacy to lower 3.0.9 Co-authored-by: svlandeg <svlandeg@github.com>
2022-03-04 11:17:36 +03:00
def test_no_entities():
# Test that having no entities doesn't crash the model
TRAIN_DATA = [
(
"The sky is blue.",
{
"sent_starts": [1, 0, 0, 0, 0],
},
)
]
nlp = English()
vector_length = 3
train_examples = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
train_examples.append(Example.from_dict(doc, annotation))
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
return mykb
# Create and train the Entity Linker
entity_linker = nlp.add_pipe("entity_linker", last=True)
entity_linker.set_kb(create_kb)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(2):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
# adding additional components that are required for the entity_linker
nlp.add_pipe("sentencizer", first=True)
# this will run the pipeline on the examples and shouldn't crash
results = nlp.evaluate(train_examples)
def test_partial_links():
# Test that having some entities on the doc without gold links, doesn't crash
TRAIN_DATA = [
(
"Russ Cochran his reprints include EC Comics.",
{
"links": {(0, 12): {"Q2146908": 1.0}},
"entities": [(0, 12, "PERSON")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0],
},
)
]
nlp = English()
vector_length = 3
train_examples = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
train_examples.append(Example.from_dict(doc, annotation))
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
return mykb
# Create and train the Entity Linker
entity_linker = nlp.add_pipe("entity_linker", last=True)
entity_linker.set_kb(create_kb)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(2):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
# adding additional components that are required for the entity_linker
nlp.add_pipe("sentencizer", first=True)
patterns = [
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
]
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
ruler.add_patterns(patterns)
# this will run the pipeline on the examples and shouldn't crash
results = nlp.evaluate(train_examples)
assert "PERSON" in results["ents_per_type"]
assert "PERSON" in results["nel_f_per_type"]
assert "ORG" in results["ents_per_type"]
assert "ORG" not in results["nel_f_per_type"]
2019-03-22 01:17:25 +03:00
def test_kb_valid_entities(nlp):
"""Test the valid construction of a KB with 3 entities and two aliases"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
# adding aliases
2019-07-17 13:17:02 +03:00
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the corresponding KB
2019-07-17 13:17:02 +03:00
assert mykb.get_size_entities() == 3
assert mykb.get_size_aliases() == 2
# test retrieval of the entity vectors
assert mykb.get_vector("Q1") == [8, 4, 3]
assert mykb.get_vector("Q2") == [2, 1, 0]
assert mykb.get_vector("Q3") == [-1, -6, 5]
2019-07-17 18:18:26 +03:00
# test retrieval of prior probabilities
assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
2019-07-22 14:39:32 +03:00
assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
2019-07-17 18:18:26 +03:00
2019-03-22 01:17:25 +03:00
def test_kb_invalid_entities(nlp):
"""Test the invalid construction of a KB with an alias linked to a non-existing entity"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because one of the given IDs is not valid
with pytest.raises(ValueError):
2019-07-17 13:17:02 +03:00
mykb.add_alias(
alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
)
2019-03-22 01:17:25 +03:00
def test_kb_invalid_probabilities(nlp):
"""Test the invalid construction of a KB with wrong prior probabilities"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because the sum of the probabilities exceeds 1
with pytest.raises(ValueError):
2019-07-17 13:17:02 +03:00
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
2019-03-22 01:17:25 +03:00
def test_kb_invalid_combination(nlp):
"""Test the invalid construction of a KB with non-matching entity and probability lists"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because the entities and probabilities vectors are not of equal length
with pytest.raises(ValueError):
2019-07-17 13:17:02 +03:00
mykb.add_alias(
alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
)
def test_kb_invalid_entity_vector(nlp):
"""Test the invalid construction of a KB with non-matching entity vector lengths"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
# this should fail because the kb's expected entity vector length is 3
with pytest.raises(ValueError):
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
def test_kb_default(nlp):
2020-10-07 15:58:16 +03:00
"""Test that the default (empty) KB is loaded upon construction"""
entity_linker = nlp.add_pipe("entity_linker", config={})
assert len(entity_linker.kb) == 0
assert entity_linker.kb.get_size_entities() == 0
assert entity_linker.kb.get_size_aliases() == 0
# 64 is the default value from pipeline.entity_linker
2020-08-05 17:00:59 +03:00
assert entity_linker.kb.entity_vector_length == 64
def test_kb_custom_length(nlp):
"""Test that the default (empty) KB can be configured with a custom entity length"""
2020-10-10 19:55:07 +03:00
entity_linker = nlp.add_pipe("entity_linker", config={"entity_vector_length": 35})
assert len(entity_linker.kb) == 0
assert entity_linker.kb.get_size_entities() == 0
assert entity_linker.kb.get_size_aliases() == 0
assert entity_linker.kb.entity_vector_length == 35
2020-10-08 11:34:01 +03:00
def test_kb_initialize_empty(nlp):
"""Test that the EL can't initialize without examples"""
entity_linker = nlp.add_pipe("entity_linker")
with pytest.raises(TypeError):
2020-09-28 22:35:09 +03:00
entity_linker.initialize(lambda: [])
2020-09-22 22:53:06 +03:00
def test_kb_serialize(nlp):
"""Test serialization of the KB"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
with make_tempdir() as d:
# normal read-write behaviour
mykb.to_disk(d / "kb")
mykb.from_disk(d / "kb")
mykb.to_disk(d / "new" / "kb")
mykb.from_disk(d / "new" / "kb")
# allow overwriting an existing file
mykb.to_disk(d / "kb")
2020-09-22 22:53:06 +03:00
with pytest.raises(ValueError):
# can not read from an unknown file
mykb.from_disk(d / "unknown" / "kb")
@pytest.mark.issue(9137)
def test_kb_serialize_2(nlp):
v = [5, 6, 7, 8]
kb1 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4)
kb1.set_entities(["E1"], [1], [v])
assert kb1.get_vector("E1") == v
with make_tempdir() as d:
kb1.to_disk(d / "kb")
kb2 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4)
kb2.from_disk(d / "kb")
assert kb2.get_vector("E1") == v
def test_kb_set_entities(nlp):
"""Test that set_entities entirely overwrites the previous set of entities"""
v = [5, 6, 7, 8]
v1 = [1, 1, 1, 0]
v2 = [2, 2, 2, 3]
kb1 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4)
kb1.set_entities(["E0"], [1], [v])
assert kb1.get_entity_strings() == ["E0"]
kb1.set_entities(["E1", "E2"], [1, 9], [v1, v2])
assert set(kb1.get_entity_strings()) == {"E1", "E2"}
assert kb1.get_vector("E1") == v1
assert kb1.get_vector("E2") == v2
with make_tempdir() as d:
kb1.to_disk(d / "kb")
kb2 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4)
kb2.from_disk(d / "kb")
assert set(kb2.get_entity_strings()) == {"E1", "E2"}
assert kb2.get_vector("E1") == v1
assert kb2.get_vector("E2") == v2
def test_kb_serialize_vocab(nlp):
"""Test serialization of the KB and custom strings"""
entity = "MyFunnyID"
assert entity not in nlp.vocab.strings
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
assert not mykb.contains_entity(entity)
mykb.add_entity(entity, freq=342, entity_vector=[3])
assert mykb.contains_entity(entity)
assert entity in mykb.vocab.strings
with make_tempdir() as d:
# normal read-write behaviour
mykb.to_disk(d / "kb")
mykb_new = KnowledgeBase(Vocab(), entity_vector_length=1)
mykb_new.from_disk(d / "kb")
assert entity in mykb_new.vocab.strings
2019-03-22 01:17:25 +03:00
def test_candidate_generation(nlp):
"""Test correct candidate generation"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
doc = nlp("douglas adam Adam shrubbery")
douglas_ent = doc[0:1]
adam_ent = doc[1:2]
Adam_ent = doc[2:3]
shrubbery_ent = doc[3:4]
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
2019-07-17 18:18:26 +03:00
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
2019-07-17 13:17:02 +03:00
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the relevant candidates
assert len(get_candidates(mykb, douglas_ent)) == 2
assert len(get_candidates(mykb, adam_ent)) == 1
assert len(get_candidates(mykb, Adam_ent)) == 0 # default case sensitive
assert len(get_candidates(mykb, shrubbery_ent)) == 0
2019-07-17 18:18:26 +03:00
# test the content of the candidates
assert get_candidates(mykb, adam_ent)[0].entity_ == "Q2"
assert get_candidates(mykb, adam_ent)[0].alias_ == "adam"
assert_almost_equal(get_candidates(mykb, adam_ent)[0].entity_freq, 12)
assert_almost_equal(get_candidates(mykb, adam_ent)[0].prior_prob, 0.9)
def test_el_pipe_configuration(nlp):
"""Test correct candidate generation as part of the EL pipe"""
nlp.add_pipe("sentencizer")
pattern = {"label": "PERSON", "pattern": [{"LOWER": "douglas"}]}
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns([pattern])
2020-10-08 11:34:01 +03:00
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
kb.add_entity(entity="Q2", freq=12, entity_vector=[2])
kb.add_entity(entity="Q3", freq=5, entity_vector=[3])
2020-10-10 19:55:07 +03:00
kb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
2020-10-08 11:34:01 +03:00
return kb
# run an EL pipe without a trained context encoder, to check the candidate generation step only
entity_linker = nlp.add_pipe("entity_linker", config={"incl_context": False})
2020-10-08 11:34:01 +03:00
entity_linker.set_kb(create_kb)
# With the default get_candidates function, matching is case-sensitive
text = "Douglas and douglas are not the same."
doc = nlp(text)
assert doc[0].ent_kb_id_ == "NIL"
assert doc[1].ent_kb_id_ == ""
assert doc[2].ent_kb_id_ == "Q2"
def get_lowercased_candidates(kb, span):
return kb.get_alias_candidates(span.text.lower())
2021-03-02 19:56:28 +03:00
@registry.misc("spacy.LowercaseCandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
return get_lowercased_candidates
# replace the pipe with a new one with with a different candidate generator
2020-10-08 11:34:01 +03:00
entity_linker = nlp.replace_pipe(
"entity_linker",
"entity_linker",
config={
"incl_context": False,
2020-09-03 18:31:14 +03:00
"get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
},
)
2020-10-08 11:34:01 +03:00
entity_linker.set_kb(create_kb)
doc = nlp(text)
assert doc[0].ent_kb_id_ == "Q2"
assert doc[1].ent_kb_id_ == ""
assert doc[2].ent_kb_id_ == "Q2"
2019-07-17 18:18:26 +03:00
def test_nel_nsents(nlp):
"""Test that n_sents can be set through the configuration"""
entity_linker = nlp.add_pipe("entity_linker", config={})
assert entity_linker.n_sents == 0
2021-06-28 12:48:00 +03:00
entity_linker = nlp.replace_pipe(
"entity_linker", "entity_linker", config={"n_sents": 2}
)
assert entity_linker.n_sents == 2
def test_vocab_serialization(nlp):
"""Test that string information is retained across storage"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
2020-09-29 22:39:28 +03:00
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
q2_hash = mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
2020-09-29 22:39:28 +03:00
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
2020-09-29 22:39:28 +03:00
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
adam_hash = mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
candidates = mykb.get_alias_candidates("adam")
assert len(candidates) == 1
assert candidates[0].entity == q2_hash
assert candidates[0].entity_ == "Q2"
assert candidates[0].alias == adam_hash
assert candidates[0].alias_ == "adam"
with make_tempdir() as d:
mykb.to_disk(d / "kb")
kb_new_vocab = KnowledgeBase(Vocab(), entity_vector_length=1)
kb_new_vocab.from_disk(d / "kb")
candidates = kb_new_vocab.get_alias_candidates("adam")
assert len(candidates) == 1
assert candidates[0].entity == q2_hash
assert candidates[0].entity_ == "Q2"
assert candidates[0].alias == adam_hash
assert candidates[0].alias_ == "adam"
assert kb_new_vocab.get_vector("Q2") == [2]
assert_almost_equal(kb_new_vocab.get_prior_prob("Q2", "douglas"), 0.4)
def test_append_alias(nlp):
"""Test that we can append additional alias-entity pairs"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the relevant candidates
assert len(mykb.get_alias_candidates("douglas")) == 2
# append an alias
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
# test the size of the relevant candidates has been incremented
assert len(mykb.get_alias_candidates("douglas")) == 3
# append the same alias-entity pair again should not work (will throw a warning)
2019-10-24 17:16:27 +03:00
with pytest.warns(UserWarning):
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
# test the size of the relevant candidates remained unchanged
assert len(mykb.get_alias_candidates("douglas")) == 3
@pytest.mark.filterwarnings("ignore:\\[W036")
def test_append_invalid_alias(nlp):
"""Test that append an alias will throw an error if prior probs are exceeding 1"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# append an alias - should fail because the entities and probabilities vectors are not of equal length
with pytest.raises(ValueError):
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
@pytest.mark.filterwarnings("ignore:\\[W036")
def test_preserving_links_asdoc(nlp):
"""Test that Span.as_doc preserves the existing entity links"""
vector_length = 1
2020-10-08 11:34:01 +03:00
def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
# adding aliases
mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
return mykb
# set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
nlp.add_pipe("sentencizer")
2019-07-17 13:17:02 +03:00
patterns = [
{"label": "GPE", "pattern": "Boston"},
{"label": "GPE", "pattern": "Denver"},
]
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
2020-10-07 15:58:16 +03:00
config = {"incl_prior": False}
2020-10-08 11:34:01 +03:00
entity_linker = nlp.add_pipe("entity_linker", config=config, last=True)
entity_linker.set_kb(create_kb)
2020-09-28 22:35:09 +03:00
nlp.initialize()
assert entity_linker.model.get_dim("nO") == vector_length
# test whether the entity links are preserved by the `as_doc()` function
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
for ent in doc.ents:
orig_text = ent.text
orig_kb_id = ent.kb_id_
sent_doc = ent.sent.as_doc()
for s_ent in sent_doc.ents:
if s_ent.text == orig_text:
assert s_ent.kb_id_ == orig_kb_id
def test_preserving_links_ents(nlp):
"""Test that doc.ents preserves KB annotations"""
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
assert len(list(doc.ents)) == 0
boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
doc.ents = [boston_ent]
assert len(list(doc.ents)) == 1
assert list(doc.ents)[0].label_ == "LOC"
assert list(doc.ents)[0].kb_id_ == "Q1"
def test_preserving_links_ents_2(nlp):
"""Test that doc.ents preserves KB annotations"""
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
assert len(list(doc.ents)) == 0
loc = doc.vocab.strings.add("LOC")
q1 = doc.vocab.strings.add("Q1")
doc.ents = [(loc, q1, 3, 4)]
assert len(list(doc.ents)) == 1
assert list(doc.ents)[0].label_ == "LOC"
assert list(doc.ents)[0].kb_id_ == "Q1"
# fmt: off
TRAIN_DATA = [
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
("Russ Cochran captured his first major title with his son as caddie.",
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
"entities": [(0, 12, "PERSON")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}),
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
("Russ Cochran his reprints include EC Comics.",
{"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
Fix entity linker batching (#9669) * Partial fix of entity linker batching * Add import * Better name * Add `use_gold_ents` option, docs * Change to v2, create stub v1, update docs etc. * Fix error type Honestly no idea what the right type to use here is. ConfigValidationError seems wrong. Maybe a NotImplementedError? * Make mypy happy * Add hacky fix for init issue * Add legacy pipeline entity linker * Fix references to class name * Add __init__.py for legacy * Attempted fix for loss issue * Remove placeholder V1 * formatting * slightly more interesting train data * Handle batches with no usable examples This adds a test for batches that have docs but not entities, and a check in the component that detects such cases and skips the update step as thought the batch were empty. * Remove todo about data verification Check for empty data was moved further up so this should be OK now - the case in question shouldn't be possible. * Fix gradient calculation The model doesn't know which entities are not in the kb, so it generates embeddings for the context of all of them. However, the loss does know which entities aren't in the kb, and it ignores them, as there's no sensible gradient. This has the issue that the gradient will not be calculated for some of the input embeddings, which causes a dimension mismatch in backprop. That should have caused a clear error, but with numpyops it was causing nans to happen, which is another problem that should be addressed separately. This commit changes the loss to give a zero gradient for entities not in the kb. * add failing test for v1 EL legacy architecture * Add nasty but simple working check for legacy arch * Clarify why init hack works the way it does * Clarify use_gold_ents use case * Fix use gold ents related handling * Add tests for no gold ents and fix other tests * Use aligned ents function (not working) This doesn't actually work because the "aligned" ents are gold-only. But if I have a different function that returns the intersection, *then* this will work as desired. * Use proper matching ent check This changes the process when gold ents are not used so that the intersection of ents in the pred and gold is used. * Move get_matching_ents to Example * Use model attribute to check for legacy arch * Rename flag * bump spacy-legacy to lower 3.0.9 Co-authored-by: svlandeg <svlandeg@github.com>
2022-03-04 11:17:36 +03:00
"entities": [(0, 12, "PERSON"), (34, 43, "ART")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
("Russ Cochran has been publishing comic art.",
{"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
"entities": [(0, 12, "PERSON")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
("Russ Cochran was a member of University of Kentucky's golf team.",
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
"entities": [(0, 12, "PERSON"), (43, 51, "LOC")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]})
]
GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
# fmt: on
def test_overfitting_IO():
# Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
nlp = English()
vector_length = 3
assert "Q2146908" not in nlp.vocab.strings
# Convert the texts to docs to make sure we have doc.ents set for the training examples
train_examples = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
train_examples.append(Example.from_dict(doc, annotation))
2020-10-08 11:34:01 +03:00
def create_kb(vocab):
# create artificial KB - assign same prior weight to the two russ cochran's
# Q2146908 (Russ Cochran): American golfer
# Q7381115 (Russ Cochran): publisher
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias(
alias="Russ Cochran",
entities=["Q2146908", "Q7381115"],
probabilities=[0.5, 0.5],
)
return mykb
# Create the Entity Linker component and add it to the pipeline
2020-10-10 20:14:48 +03:00
entity_linker = nlp.add_pipe("entity_linker", last=True)
Fix entity linker batching (#9669) * Partial fix of entity linker batching * Add import * Better name * Add `use_gold_ents` option, docs * Change to v2, create stub v1, update docs etc. * Fix error type Honestly no idea what the right type to use here is. ConfigValidationError seems wrong. Maybe a NotImplementedError? * Make mypy happy * Add hacky fix for init issue * Add legacy pipeline entity linker * Fix references to class name * Add __init__.py for legacy * Attempted fix for loss issue * Remove placeholder V1 * formatting * slightly more interesting train data * Handle batches with no usable examples This adds a test for batches that have docs but not entities, and a check in the component that detects such cases and skips the update step as thought the batch were empty. * Remove todo about data verification Check for empty data was moved further up so this should be OK now - the case in question shouldn't be possible. * Fix gradient calculation The model doesn't know which entities are not in the kb, so it generates embeddings for the context of all of them. However, the loss does know which entities aren't in the kb, and it ignores them, as there's no sensible gradient. This has the issue that the gradient will not be calculated for some of the input embeddings, which causes a dimension mismatch in backprop. That should have caused a clear error, but with numpyops it was causing nans to happen, which is another problem that should be addressed separately. This commit changes the loss to give a zero gradient for entities not in the kb. * add failing test for v1 EL legacy architecture * Add nasty but simple working check for legacy arch * Clarify why init hack works the way it does * Clarify use_gold_ents use case * Fix use gold ents related handling * Add tests for no gold ents and fix other tests * Use aligned ents function (not working) This doesn't actually work because the "aligned" ents are gold-only. But if I have a different function that returns the intersection, *then* this will work as desired. * Use proper matching ent check This changes the process when gold ents are not used so that the intersection of ents in the pred and gold is used. * Move get_matching_ents to Example * Use model attribute to check for legacy arch * Rename flag * bump spacy-legacy to lower 3.0.9 Co-authored-by: svlandeg <svlandeg@github.com>
2022-03-04 11:17:36 +03:00
assert isinstance(entity_linker, EntityLinker)
2020-10-08 11:34:01 +03:00
entity_linker.set_kb(create_kb)
assert "Q2146908" in entity_linker.vocab.strings
assert "Q2146908" in entity_linker.kb.vocab.strings
# train the NEL pipe
2020-09-28 22:35:09 +03:00
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert entity_linker.model.get_dim("nO") == vector_length
assert entity_linker.model.get_dim("nO") == entity_linker.kb.entity_vector_length
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["entity_linker"] < 0.001
Revert "Set annotations in update" (#6810) * Revert "Set annotations in update (#6767)" This reverts commit e680efc7cc365a31c1c7f9d5eb8733c1e61e558d. * Fix version * Update spacy/pipeline/entity_linker.py * Update spacy/pipeline/entity_linker.py * Update spacy/pipeline/tagger.pyx * Update spacy/pipeline/tok2vec.py * Update spacy/pipeline/tok2vec.py * Update spacy/pipeline/transition_parser.pyx * Update spacy/pipeline/transition_parser.pyx * Update website/docs/api/multilabel_textcategorizer.md * Update website/docs/api/tok2vec.md * Update website/docs/usage/layers-architectures.md * Update website/docs/usage/layers-architectures.md * Update website/docs/api/transformer.md * Update website/docs/api/textcategorizer.md * Update website/docs/api/tagger.md * Update spacy/pipeline/entity_linker.py * Update website/docs/api/sentencerecognizer.md * Update website/docs/api/pipe.md * Update website/docs/api/morphologizer.md * Update website/docs/api/entityrecognizer.md * Update spacy/pipeline/entity_linker.py * Update spacy/pipeline/multitask.pyx * Update spacy/pipeline/tagger.pyx * Update spacy/pipeline/tagger.pyx * Update spacy/pipeline/textcat.py * Update spacy/pipeline/textcat.py * Update spacy/pipeline/textcat.py * Update spacy/pipeline/tok2vec.py * Update spacy/pipeline/trainable_pipe.pyx * Update spacy/pipeline/trainable_pipe.pyx * Update spacy/pipeline/transition_parser.pyx * Update spacy/pipeline/transition_parser.pyx * Update website/docs/api/entitylinker.md * Update website/docs/api/dependencyparser.md * Update spacy/pipeline/trainable_pipe.pyx
2021-01-25 17:18:45 +03:00
# adding additional components that are required for the entity_linker
nlp.add_pipe("sentencizer", first=True)
# Add a custom component to recognize "Russ Cochran" as an entity for the example training data
patterns = [
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
]
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
ruler.add_patterns(patterns)
# test the trained model
predictions = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
for ent in doc.ents:
predictions.append(ent.kb_id_)
assert predictions == GOLD_entities
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
assert nlp2.pipe_names == nlp.pipe_names
assert "Q2146908" in nlp2.vocab.strings
entity_linker2 = nlp2.get_pipe("entity_linker")
assert "Q2146908" in entity_linker2.vocab.strings
assert "Q2146908" in entity_linker2.kb.vocab.strings
predictions = []
for text, annotation in TRAIN_DATA:
doc2 = nlp2(text)
for ent in doc2.ents:
predictions.append(ent.kb_id_)
assert predictions == GOLD_entities
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
"Russ Cochran captured his first major title with his son as caddie.",
"Russ Cochran his reprints include EC Comics.",
"Russ Cochran has been publishing comic art.",
"Russ Cochran was a member of University of Kentucky's golf team.",
]
batch_deps_1 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
no_batch_deps = [doc.to_array([ENT_KB_ID]) for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2)
assert_equal(batch_deps_1, no_batch_deps)
def test_kb_serialization():
# Test that the KB can be used in a pipeline with a different vocab
vector_length = 3
with make_tempdir() as tmp_dir:
kb_dir = tmp_dir / "kb"
nlp1 = English()
assert "Q2146908" not in nlp1.vocab.strings
mykb = KnowledgeBase(nlp1.vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
assert "Q2146908" in nlp1.vocab.strings
mykb.to_disk(kb_dir)
nlp2 = English()
assert "RandomWord" not in nlp2.vocab.strings
nlp2.vocab.strings.add("RandomWord")
assert "RandomWord" in nlp2.vocab.strings
assert "Q2146908" not in nlp2.vocab.strings
# Create the Entity Linker component with the KB from file, and check the final vocab
entity_linker = nlp2.add_pipe("entity_linker", last=True)
entity_linker.set_kb(load_kb(kb_dir))
assert "Q2146908" in nlp2.vocab.strings
assert "RandomWord" in nlp2.vocab.strings
@pytest.mark.xfail(reason="Needs fixing")
def test_kb_pickle():
# Test that the KB can be pickled
nlp = English()
kb_1 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
assert not kb_1.contains_alias("Russ Cochran")
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
assert kb_1.contains_alias("Russ Cochran")
data = pickle.dumps(kb_1)
kb_2 = pickle.loads(data)
assert kb_2.contains_alias("Russ Cochran")
@pytest.mark.xfail(reason="Needs fixing")
def test_nel_pickle():
# Test that a pipeline with an EL component can be pickled
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=3)
kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
return kb
nlp_1 = English()
nlp_1.add_pipe("ner")
entity_linker_1 = nlp_1.add_pipe("entity_linker", last=True)
entity_linker_1.set_kb(create_kb)
assert nlp_1.pipe_names == ["ner", "entity_linker"]
assert entity_linker_1.kb.contains_alias("Russ Cochran")
data = pickle.dumps(nlp_1)
nlp_2 = pickle.loads(data)
assert nlp_2.pipe_names == ["ner", "entity_linker"]
entity_linker_2 = nlp_2.get_pipe("entity_linker")
assert entity_linker_2.kb.contains_alias("Russ Cochran")
def test_kb_to_bytes():
# Test that the KB's to_bytes method works correctly
nlp = English()
kb_1 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb_1.add_entity(entity="Q66", freq=9, entity_vector=[1, 2, 3])
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
kb_1.add_alias(alias="Boeing", entities=["Q66"], probabilities=[0.5])
2021-06-28 12:48:00 +03:00
kb_1.add_alias(
alias="Randomness", entities=["Q66", "Q2146908"], probabilities=[0.1, 0.2]
)
assert kb_1.contains_alias("Russ Cochran")
kb_bytes = kb_1.to_bytes()
kb_2 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
assert not kb_2.contains_alias("Russ Cochran")
kb_2 = kb_2.from_bytes(kb_bytes)
# check that both KBs are exactly the same
assert kb_1.get_size_entities() == kb_2.get_size_entities()
assert kb_1.entity_vector_length == kb_2.entity_vector_length
assert kb_1.get_entity_strings() == kb_2.get_entity_strings()
assert kb_1.get_vector("Q2146908") == kb_2.get_vector("Q2146908")
assert kb_1.get_vector("Q66") == kb_2.get_vector("Q66")
assert kb_2.contains_alias("Russ Cochran")
assert kb_1.get_size_aliases() == kb_2.get_size_aliases()
assert kb_1.get_alias_strings() == kb_2.get_alias_strings()
2021-06-28 12:48:00 +03:00
assert len(kb_1.get_alias_candidates("Russ Cochran")) == len(
kb_2.get_alias_candidates("Russ Cochran")
)
assert len(kb_1.get_alias_candidates("Randomness")) == len(
kb_2.get_alias_candidates("Randomness")
)
def test_nel_to_bytes():
# Test that a pipeline with an EL component can be converted to bytes
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=3)
kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
return kb
nlp_1 = English()
nlp_1.add_pipe("ner")
entity_linker_1 = nlp_1.add_pipe("entity_linker", last=True)
entity_linker_1.set_kb(create_kb)
assert entity_linker_1.kb.contains_alias("Russ Cochran")
assert nlp_1.pipe_names == ["ner", "entity_linker"]
nlp_bytes = nlp_1.to_bytes()
nlp_2 = English()
nlp_2.add_pipe("ner")
nlp_2.add_pipe("entity_linker", last=True)
assert nlp_2.pipe_names == ["ner", "entity_linker"]
assert not nlp_2.get_pipe("entity_linker").kb.contains_alias("Russ Cochran")
nlp_2 = nlp_2.from_bytes(nlp_bytes)
kb_2 = nlp_2.get_pipe("entity_linker").kb
assert kb_2.contains_alias("Russ Cochran")
assert kb_2.get_vector("Q2146908") == [6, -4, 3]
2021-06-28 12:48:00 +03:00
assert_almost_equal(
kb_2.get_prior_prob(entity="Q2146908", alias="Russ Cochran"), 0.8
)
def test_scorer_links():
train_examples = []
nlp = English()
ref1 = nlp("Julia lives in London happily.")
ref1.ents = [
Span(ref1, 0, 1, label="PERSON", kb_id="Q2"),
Span(ref1, 3, 4, label="LOC", kb_id="Q3"),
]
pred1 = nlp("Julia lives in London happily.")
pred1.ents = [
Span(pred1, 0, 1, label="PERSON", kb_id="Q70"),
Span(pred1, 3, 4, label="LOC", kb_id="Q3"),
]
train_examples.append(Example(pred1, ref1))
ref2 = nlp("She loves London.")
ref2.ents = [
Span(ref2, 0, 1, label="PERSON", kb_id="Q2"),
Span(ref2, 2, 3, label="LOC", kb_id="Q13"),
]
pred2 = nlp("She loves London.")
pred2.ents = [
Span(pred2, 0, 1, label="PERSON", kb_id="Q2"),
Span(pred2, 2, 3, label="LOC", kb_id="NIL"),
]
train_examples.append(Example(pred2, ref2))
ref3 = nlp("London is great.")
ref3.ents = [Span(ref3, 0, 1, label="LOC", kb_id="NIL")]
pred3 = nlp("London is great.")
pred3.ents = [Span(pred3, 0, 1, label="LOC", kb_id="NIL")]
train_examples.append(Example(pred3, ref3))
scores = Scorer().score_links(train_examples, negative_labels=["NIL"])
assert scores["nel_f_per_type"]["PERSON"]["p"] == 1 / 2
assert scores["nel_f_per_type"]["PERSON"]["r"] == 1 / 2
assert scores["nel_f_per_type"]["LOC"]["p"] == 1 / 1
assert scores["nel_f_per_type"]["LOC"]["r"] == 1 / 2
assert scores["nel_micro_p"] == 2 / 3
assert scores["nel_micro_r"] == 2 / 4
Fix entity linker batching (#9669) * Partial fix of entity linker batching * Add import * Better name * Add `use_gold_ents` option, docs * Change to v2, create stub v1, update docs etc. * Fix error type Honestly no idea what the right type to use here is. ConfigValidationError seems wrong. Maybe a NotImplementedError? * Make mypy happy * Add hacky fix for init issue * Add legacy pipeline entity linker * Fix references to class name * Add __init__.py for legacy * Attempted fix for loss issue * Remove placeholder V1 * formatting * slightly more interesting train data * Handle batches with no usable examples This adds a test for batches that have docs but not entities, and a check in the component that detects such cases and skips the update step as thought the batch were empty. * Remove todo about data verification Check for empty data was moved further up so this should be OK now - the case in question shouldn't be possible. * Fix gradient calculation The model doesn't know which entities are not in the kb, so it generates embeddings for the context of all of them. However, the loss does know which entities aren't in the kb, and it ignores them, as there's no sensible gradient. This has the issue that the gradient will not be calculated for some of the input embeddings, which causes a dimension mismatch in backprop. That should have caused a clear error, but with numpyops it was causing nans to happen, which is another problem that should be addressed separately. This commit changes the loss to give a zero gradient for entities not in the kb. * add failing test for v1 EL legacy architecture * Add nasty but simple working check for legacy arch * Clarify why init hack works the way it does * Clarify use_gold_ents use case * Fix use gold ents related handling * Add tests for no gold ents and fix other tests * Use aligned ents function (not working) This doesn't actually work because the "aligned" ents are gold-only. But if I have a different function that returns the intersection, *then* this will work as desired. * Use proper matching ent check This changes the process when gold ents are not used so that the intersection of ents in the pred and gold is used. * Move get_matching_ents to Example * Use model attribute to check for legacy arch * Rename flag * bump spacy-legacy to lower 3.0.9 Co-authored-by: svlandeg <svlandeg@github.com>
2022-03-04 11:17:36 +03:00
# fmt: off
@pytest.mark.parametrize(
"name,config",
[
("entity_linker", {"@architectures": "spacy.EntityLinker.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
("entity_linker", {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
],
)
# fmt: on
def test_legacy_architectures(name, config):
# Ensure that the legacy architectures still work
vector_length = 3
nlp = English()
train_examples = []
for text, annotation in TRAIN_DATA:
doc = nlp.make_doc(text)
train_examples.append(Example.from_dict(doc, annotation))
def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias(
alias="Russ Cochran",
entities=["Q2146908", "Q7381115"],
probabilities=[0.5, 0.5],
)
return mykb
entity_linker = nlp.add_pipe(name, config={"model": config})
if config["@architectures"] == "spacy.EntityLinker.v1":
assert isinstance(entity_linker, EntityLinker_v1)
else:
assert isinstance(entity_linker, EntityLinker)
entity_linker.set_kb(create_kb)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(2):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
@pytest.mark.parametrize(
"patterns",
[
# perfect case
[{"label": "CHARACTER", "pattern": "Kirby"}],
# typo for false negative
[{"label": "PERSON", "pattern": "Korby"}],
# random stuff for false positive
[{"label": "IS", "pattern": "is"}, {"label": "COLOR", "pattern": "pink"}],
],
)
def test_no_gold_ents(patterns):
# test that annotating components work
TRAIN_DATA = [
(
"Kirby is pink",
{
"links": {(0, 5): {"Q613241": 1.0}},
"entities": [(0, 5, "CHARACTER")],
"sent_starts": [1, 0, 0],
},
)
]
nlp = English()
vector_length = 3
train_examples = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
train_examples.append(Example.from_dict(doc, annotation))
# Create a ruler to mark entities
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
# Apply ruler to examples. In a real pipeline this would be an annotating component.
for eg in train_examples:
eg.predicted = ruler(eg.predicted)
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Kirby", ["Q613241"], [0.9])
# Placeholder
mykb.add_entity(entity="pink", freq=12, entity_vector=[7, 2, -5])
mykb.add_alias("pink", ["pink"], [0.9])
return mykb
# Create and train the Entity Linker
entity_linker = nlp.add_pipe(
"entity_linker", config={"use_gold_ents": False}, last=True
)
entity_linker.set_kb(create_kb)
assert entity_linker.use_gold_ents == False
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(2):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
# adding additional components that are required for the entity_linker
nlp.add_pipe("sentencizer", first=True)
# this will run the pipeline on the examples and shouldn't crash
results = nlp.evaluate(train_examples)