spaCy/spacy/tokens/span.pyx

837 lines
30 KiB
Cython
Raw Normal View History

2017-04-15 14:05:15 +03:00
cimport numpy as np
from libc.math cimport sqrt
import numpy
2020-02-18 17:38:18 +03:00
from thinc.api import get_array_module
2020-04-28 14:37:37 +03:00
import warnings
import copy
from .doc cimport token_by_start, token_by_end, get_token_attr, _get_lca_matrix
2015-08-26 20:20:46 +03:00
from ..structs cimport TokenC, LexemeC
2016-09-23 17:02:28 +03:00
from ..typedefs cimport flags_t, attr_t, hash_t
2015-07-16 20:55:21 +03:00
from ..attrs cimport attr_id_t
from ..parts_of_speech cimport univ_pos_t
from ..attrs cimport *
from ..lexeme cimport Lexeme
from ..symbols cimport dep
from ..util import normalize_slice
2020-10-04 12:16:31 +03:00
from ..errors import Errors, Warnings
from .underscore import Underscore, get_ext_args
cdef class Span:
"""A slice from a Doc object.
DOCS: https://spacy.io/api/span
"""
2017-10-07 19:56:01 +03:00
@classmethod
def set_extension(cls, name, **kwargs):
"""Define a custom attribute which becomes available as `Span._`.
2020-05-24 18:20:58 +03:00
name (str): Name of the attribute to set.
default: Optional default value of the attribute.
getter (callable): Optional getter function.
setter (callable): Optional setter function.
method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/span#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
"""
if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Span"))
Underscore.span_extensions[name] = get_ext_args(**kwargs)
2017-10-07 19:56:01 +03:00
@classmethod
def get_extension(cls, name):
"""Look up a previously registered extension by name.
2020-05-24 18:20:58 +03:00
name (str): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/span#get_extension
"""
2017-10-07 19:56:01 +03:00
return Underscore.span_extensions.get(name)
@classmethod
def has_extension(cls, name):
"""Check whether an extension has been registered.
2020-05-24 18:20:58 +03:00
name (str): Name of the extension.
RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/span#has_extension
"""
2017-10-07 19:56:01 +03:00
return name in Underscore.span_extensions
@classmethod
def remove_extension(cls, name):
"""Remove a previously registered extension.
2020-05-24 18:20:58 +03:00
name (str): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension.
DOCS: https://spacy.io/api/span#remove_extension
"""
if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name))
return Underscore.span_extensions.pop(name)
def __cinit__(self, Doc doc, int start, int end, label=0, vector=None,
2019-03-14 17:48:40 +03:00
vector_norm=None, kb_id=0):
2017-05-18 23:17:24 +03:00
"""Create a `Span` object from the slice `doc[start : end]`.
doc (Doc): The parent document.
start (int): The index of the first token of the span.
end (int): The index of the first token after the span.
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167) * 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 16:21:40 +03:00
label (int or str): A label to attach to the Span, e.g. for named entities.
vector (ndarray[ndim=1, dtype='float32']): A meaning representation
of the span.
vector_norm (float): The L2 norm of the span's vector representation.
kb_id (uint64): An identifier from a Knowledge Base to capture the meaning of a named entity.
DOCS: https://spacy.io/api/span#init
2017-04-15 14:05:15 +03:00
"""
2016-11-01 15:27:44 +03:00
if not (0 <= start <= end <= len(doc)):
raise IndexError(Errors.E035.format(start=start, end=end, length=len(doc)))
2016-11-01 14:25:36 +03:00
self.doc = doc
if isinstance(label, str):
label = doc.vocab.strings.add(label)
if isinstance(kb_id, str):
kb_id = doc.vocab.strings.add(kb_id)
if label not in doc.vocab.strings:
raise ValueError(Errors.E084.format(label=label))
start_char = doc[start].idx if start < doc.length else len(doc.text)
if start == end:
end_char = start_char
else:
end_char = doc[end - 1].idx + len(doc[end - 1])
self.c = SpanC(
label=label,
kb_id=kb_id,
start=start,
end=end,
start_char=start_char,
end_char=end_char,
)
self._vector = vector
self._vector_norm = vector_norm
def __richcmp__(self, Span other, int op):
if other is None:
if op == 0 or op == 1 or op == 2:
return False
else:
return True
self_tuple = (self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id, self.doc)
other_tuple = (other.c.start_char, other.c.end_char, other.c.label, other.c.kb_id, other.doc)
# <
if op == 0:
return self_tuple < other_tuple
# <=
elif op == 1:
return self_tuple <= other_tuple
# ==
elif op == 2:
return self_tuple == other_tuple
# !=
elif op == 3:
return self_tuple != other_tuple
# >
elif op == 4:
return self_tuple > other_tuple
# >=
elif op == 5:
return self_tuple >= other_tuple
2017-04-26 20:01:05 +03:00
def __hash__(self):
return hash((self.doc, self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id))
2017-04-26 20:01:05 +03:00
def __len__(self):
"""Get the number of tokens in the span.
RETURNS (int): The number of tokens in the span.
DOCS: https://spacy.io/api/span#len
"""
if self.c.end < self.c.start:
return 0
return self.c.end - self.c.start
def __repr__(self):
return self.text
2015-10-06 12:45:49 +03:00
def __getitem__(self, object i):
"""Get a `Token` or a `Span` object
i (int or tuple): The index of the token within the span, or slice of
the span to get.
RETURNS (Token or Span): The token at `span[i]`.
DOCS: https://spacy.io/api/span#getitem
"""
2015-10-06 12:45:49 +03:00
if isinstance(i, slice):
start, end = normalize_slice(len(self), i.start, i.stop, i.step)
return Span(self.doc, start + self.start, end + self.start)
2015-07-30 03:30:24 +03:00
else:
if i < 0:
token_i = self.c.end + i
else:
token_i = self.c.start + i
if self.c.start <= token_i < self.c.end:
return self.doc[token_i]
else:
Add AttributeRuler for token attribute exceptions (#5842) * Add AttributeRuler for token attribute exceptions Add the `AttributeRuler` to handle exceptions for token-level attributes. The `AttributeRuler` uses `Matcher` patterns to identify target spans and applies the specified attributes to the token at the provided index in the matched span. A negative index can be used to index from the end of the matched span. The retokenizer is used to "merge" the individual tokens and assign them the provided attributes. Helper functions can import existing tag maps and morph rules to the corresponding `Matcher` patterns. There is an additional minor bug fix for `MORPH` attributes in the retokenizer to correctly normalize the values and to handle `MORPH` alongside `_` in an attrs dict. * Fix default name * Update name in error message * Extend AttributeRuler functionality * Add option to initialize with a dict of AttributeRuler patterns * Instead of silently discarding overlapping matches (the default behavior for the retokenizer if only the attrs differ), split the matches into disjoint sets and retokenize each set separately. This allows, for instance, one pattern to set the POS and another pattern to set the lemma. (If two matches modify the same attribute, it looks like the attrs are applied in the order they were added, but it may not be deterministic?) * Improve types * Sort spans before processing * Fix index boundaries in Span * Refactor retokenizer to separate attrs methods Add top-level `normalize_token_attrs` and `set_token_attrs` methods. * Update AttributeRuler to use refactored methods Update `AttributeRuler` to replace use of full retokenizer with only the relevant methods for normalizing and setting attributes for a single token. * Update spacy/pipeline/attributeruler.py Co-authored-by: Ines Montani <ines@ines.io> * Make API more similar to EntityRuler * Add `AttributeRuler.add_patterns` to add patterns from a list of dicts * Return list of dicts as property `AttributeRuler.patterns` * Make attrs_unnormed private * Add test loading patterns from assets * Revert "Fix index boundaries in Span" This reverts commit 8f8a5c33861bff2d7c3f19914e289139ab3a2c28. * Add Span index boundary checks (#5861) * Add Span index boundary checks * Return Span-specific IndexError in all cases * Simplify and fix if/else Co-authored-by: Ines Montani <ines@ines.io>
2020-08-04 18:02:39 +03:00
raise IndexError(Errors.E1002)
def __iter__(self):
"""Iterate over `Token` objects.
YIELDS (Token): A `Token` object.
DOCS: https://spacy.io/api/span#iter
"""
for i in range(self.c.start, self.c.end):
2015-09-29 16:03:55 +03:00
yield self.doc[i]
2019-02-13 15:22:05 +03:00
def __reduce__(self):
raise NotImplementedError(Errors.E112)
2017-10-07 19:56:01 +03:00
@property
def _(self):
"""Custom extension attributes registered via `set_extension`."""
2017-10-07 19:56:01 +03:00
return Underscore(Underscore.span_extensions, self,
start=self.c.start_char, end=self.c.end_char)
2017-10-23 11:38:06 +03:00
def as_doc(self, *, bint copy_user_data=False, array_head=None, array=None):
"""Create a `Doc` object with a copy of the `Span`'s data.
2017-10-09 00:50:20 +03:00
copy_user_data (bool): Whether or not to copy the original doc's user data.
array_head (tuple): `Doc` array attrs, can be passed in to speed up computation.
array (ndarray): `Doc` as array, can be passed in to speed up computation.
RETURNS (Doc): The `Doc` copy of the span.
DOCS: https://spacy.io/api/span#as_doc
"""
words = [t.text for t in self]
spaces = [bool(t.whitespace_) for t in self]
cdef Doc doc = Doc(self.doc.vocab, words=words, spaces=spaces)
if array_head is None:
array_head = self.doc._get_array_attrs()
if array is None:
array = self.doc.to_array(array_head)
array = array[self.start : self.end]
self._fix_dep_copy(array_head, array)
# Fix initial IOB so the entities are valid for doc.ents below.
if len(array) > 0 and ENT_IOB in array_head:
ent_iob_col = array_head.index(ENT_IOB)
if array[0][ent_iob_col] == 1:
array[0][ent_iob_col] = 3
doc.from_array(array_head, array)
# Set partial entities at the beginning or end of the span to have
# missing entity annotation. Note: the initial partial entity could be
# detected from the IOB annotation but the final partial entity can't,
# so detect and remove both in the same way by checking self.ents.
span_ents = {(ent.start, ent.end) for ent in self.ents}
doc_ents = doc.ents
if len(doc_ents) > 0:
# Remove initial partial ent
if (doc_ents[0].start + self.start, doc_ents[0].end + self.start) not in span_ents:
doc.set_ents([], missing=[doc_ents[0]], default="unmodified")
# Remove final partial ent
if (doc_ents[-1].start + self.start, doc_ents[-1].end + self.start) not in span_ents:
doc.set_ents([], missing=[doc_ents[-1]], default="unmodified")
2017-10-09 00:50:20 +03:00
doc.noun_chunks_iterator = self.doc.noun_chunks_iterator
doc.user_hooks = self.doc.user_hooks
doc.user_span_hooks = self.doc.user_span_hooks
doc.user_token_hooks = self.doc.user_token_hooks
doc.vector = self.vector
doc.vector_norm = self.vector_norm
doc.tensor = self.doc.tensor[self.start : self.end]
2017-10-09 00:50:20 +03:00
for key, value in self.doc.cats.items():
if hasattr(key, "__len__") and len(key) == 3:
2017-10-09 00:50:20 +03:00
cat_start, cat_end, cat_label = key
if cat_start == self.start_char and cat_end == self.end_char:
doc.cats[cat_label] = value
if copy_user_data:
user_data = {}
char_offset = self.start_char
for key, value in self.doc.user_data.items():
if isinstance(key, tuple) and len(key) == 4 and key[0] == "._.":
data_type, name, start, end = key
if start is not None or end is not None:
start -= char_offset
if end is not None:
end -= char_offset
user_data[(data_type, name, start, end)] = copy.copy(value)
else:
user_data[key] = copy.copy(value)
doc.user_data = user_data
2017-10-09 00:50:20 +03:00
return doc
2017-10-07 19:56:01 +03:00
def _fix_dep_copy(self, attrs, array):
""" Rewire dependency links to make sure their heads fall into the span
while still keeping the correct number of sentences. """
cdef int length = len(array)
cdef attr_t value
cdef int i, head_col, ancestor_i
old_to_new_root = dict()
if HEAD in attrs:
head_col = attrs.index(HEAD)
for i in range(length):
# if the HEAD refers to a token outside this span, find a more appropriate ancestor
token = self[i]
ancestor_i = token.head.i - self.c.start # span offset
if ancestor_i not in range(length):
if DEP in attrs:
array[i, attrs.index(DEP)] = dep
# try finding an ancestor within this span
ancestors = token.ancestors
for ancestor in ancestors:
ancestor_i = ancestor.i - self.c.start
if ancestor_i in range(length):
array[i, head_col] = ancestor_i - i
# if there is no appropriate ancestor, define a new artificial root
value = array[i, head_col]
if (i+value) not in range(length):
new_root = old_to_new_root.get(ancestor_i, None)
if new_root is not None:
# take the same artificial root as a previous token from the same sentence
array[i, head_col] = new_root - i
else:
# set this token as the new artificial root
array[i, head_col] = 0
old_to_new_root[ancestor_i] = i
return array
def get_lca_matrix(self):
"""Calculates a matrix of Lowest Common Ancestors (LCA) for a given
`Span`, where LCA[i, j] is the index of the lowest common ancestor among
the tokens span[i] and span[j]. If they have no common ancestor within
the span, LCA[i, j] will be -1.
RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
(n, n), where n = len(self).
DOCS: https://spacy.io/api/span#get_lca_matrix
"""
return numpy.asarray(_get_lca_matrix(self.doc, self.c.start, self.c.end))
def similarity(self, other):
"""Make a semantic similarity estimate. The default estimate is cosine
2016-11-01 14:25:36 +03:00
similarity using an average of word vectors.
2017-05-18 23:17:24 +03:00
other (object): The object to compare with. By default, accepts `Doc`,
`Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/span#similarity
2017-04-15 14:05:15 +03:00
"""
if "similarity" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["similarity"](self, other)
if len(self) == 1 and hasattr(other, "orth"):
if self[0].orth == other.orth:
return 1.0
elif isinstance(other, (Doc, Span)) and len(self) == len(other):
similar = True
for i in range(len(self)):
if self[i].orth != getattr(other[i], "orth", None):
similar = False
break
if similar:
return 1.0
if self.vocab.vectors.n_keys == 0:
2020-04-28 14:37:37 +03:00
warnings.warn(Warnings.W007.format(obj="Span"))
2015-09-22 03:10:01 +03:00
if self.vector_norm == 0.0 or other.vector_norm == 0.0:
2020-04-28 14:37:37 +03:00
warnings.warn(Warnings.W008.format(obj="Span"))
2015-09-22 03:10:01 +03:00
return 0.0
vector = self.vector
xp = get_array_module(vector)
result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
# ensure we get a scalar back (numpy does this automatically but cupy doesn't)
return result.item()
2017-08-19 13:20:45 +03:00
cpdef np.ndarray to_array(self, object py_attr_ids):
"""Given a list of M attribute IDs, export the tokens to a numpy
`ndarray` of shape `(N, M)`, where `N` is the length of the document.
The values will be 32-bit integers.
attr_ids (list[int]): A list of attribute ID ints.
RETURNS (numpy.ndarray[long, ndim=2]): A feature matrix, with one row
per word, and one column per attribute indicated in the input
`attr_ids`.
"""
cdef int i, j
cdef attr_id_t feature
cdef np.ndarray[attr_t, ndim=2] output
# Make an array from the attributes - otherwise our inner loop is Python
# dict iteration
2017-08-19 13:20:45 +03:00
cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids, dtype=numpy.uint64)
2017-08-19 17:24:28 +03:00
cdef int length = self.end - self.start
output = numpy.ndarray(shape=(length, len(attr_ids)), dtype=numpy.uint64)
2017-08-19 13:20:45 +03:00
for i in range(self.start, self.end):
for j, feature in enumerate(attr_ids):
2017-08-19 17:24:28 +03:00
output[i-self.start, j] = get_token_attr(&self.doc.c[i], feature)
2017-08-19 13:20:45 +03:00
return output
@property
def vocab(self):
"""RETURNS (Vocab): The Span's Doc's vocab."""
return self.doc.vocab
@property
def sent(self):
"""Obtain the sentence that contains this span. If the given span
crosses sentence boundaries, return only the first sentence
to which it belongs.
RETURNS (Span): The sentence span that the span is a part of.
"""
if "sent" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["sent"](self)
elif "sents" in self.doc.user_hooks:
for sentence in self.doc.user_hooks["sents"](self.doc):
if sentence.start <= self.start < sentence.end:
return sentence
# Use `sent_start` token attribute to find sentence boundaries
cdef int n = 0
if self.doc.has_annotation("SENT_START"):
# Find start of the sentence
start = self.start
while self.doc.c[start].sent_start != 1 and start > 0:
start += -1
# Find end of the sentence - can be within the entity
end = self.start + 1
while end < self.doc.length and self.doc.c[end].sent_start != 1:
end += 1
n += 1
if n >= self.doc.length:
break
return self.doc[start:end]
else:
raise ValueError(Errors.E030)
@property
def sents(self):
"""Obtain the sentences that contain this span. If the given span
crosses sentence boundaries, return all sentences it is a part of.
RETURNS (Iterable[Span]): All sentences that the span is a part of.
DOCS: https://spacy.io/api/span#sents
"""
cdef int start
cdef int i
if "sents" in self.doc.user_span_hooks:
yield from self.doc.user_span_hooks["sents"](self)
elif "sents" in self.doc.user_hooks:
for sentence in self.doc.user_hooks["sents"](self.doc):
if sentence.end > self.start:
if sentence.start < self.end or sentence.start == self.start == self.end:
yield sentence
else:
break
else:
if not self.doc.has_annotation("SENT_START"):
raise ValueError(Errors.E030)
# Use `sent_start` token attribute to find sentence boundaries
# Find start of the 1st sentence of the Span
start = self.start
while self.doc.c[start].sent_start != 1 and start > 0:
start -= 1
# Now, find all the sentences in the span
for i in range(start + 1, self.doc.length):
if self.doc.c[i].sent_start == 1:
yield Span(self.doc, start, i)
start = i
if start >= self.end:
break
if start < self.end:
yield Span(self.doc, start, self.end)
@property
def ents(self):
"""The named entities that fall completely within the span. Returns
a tuple of `Span` objects.
RETURNS (tuple): Entities in the span, one `Span` per entity.
DOCS: https://spacy.io/api/span#ents
"""
cdef Span ent
ents = []
for ent in self.doc.ents:
if ent.c.start >= self.c.start:
if ent.c.end <= self.c.end:
ents.append(ent)
else:
break
return ents
@property
def has_vector(self):
"""A boolean value indicating whether a word vector is associated with
the object.
RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/span#has_vector
"""
if "has_vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["has_vector"](self)
elif self.vocab.vectors.size > 0:
return any(token.has_vector for token in self)
elif self.doc.tensor.size > 0:
return True
else:
return False
2017-04-01 11:19:01 +03:00
@property
def vector(self):
"""A real-valued meaning representation. Defaults to an average of the
token vectors.
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the span's semantics.
DOCS: https://spacy.io/api/span#vector
"""
if "vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self)
if self._vector is None:
2021-09-20 21:22:49 +03:00
if not len(self):
xp = get_array_module(self.vocab.vectors.data)
self._vector = xp.zeros((self.vocab.vectors_length,), dtype="f")
else:
self._vector = sum(t.vector for t in self) / len(self)
return self._vector
@property
def vector_norm(self):
"""The L2 norm of the span's vector representation.
RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/span#vector_norm
"""
if "vector_norm" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self)
if self._vector_norm is None:
vector = self.vector
total = (vector*vector).sum()
xp = get_array_module(vector)
self._vector_norm = xp.sqrt(total) if total != 0. else 0.
return self._vector_norm
@property
def tensor(self):
"""The span's slice of the doc's tensor.
RETURNS (ndarray[ndim=2, dtype='float32']): A 2D numpy or cupy array
representing the span's semantics.
"""
if self.doc.tensor is None:
return None
return self.doc.tensor[self.start : self.end]
@property
def sentiment(self):
"""RETURNS (float): A scalar value indicating the positivity or
negativity of the span.
"""
if "sentiment" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["sentiment"](self)
else:
return sum([token.sentiment for token in self]) / len(self)
@property
def text(self):
2020-05-24 18:20:58 +03:00
"""RETURNS (str): The original verbatim text of the span."""
text = self.text_with_ws
if len(self) > 0 and self[-1].whitespace_:
text = text[:-1]
return text
@property
def text_with_ws(self):
"""The text content of the span with a trailing whitespace character if
the last token has one.
2020-05-24 18:20:58 +03:00
RETURNS (str): The text content of the span (with trailing
whitespace).
"""
return "".join([t.text_with_ws for t in self])
@property
def noun_chunks(self):
"""Iterate over the base noun phrases in the span. Yields base
noun-phrase #[code Span] objects, if the language has a noun chunk iterator.
Raises a NotImplementedError otherwise.
A base noun phrase, or "NP chunk", is a noun
2017-05-18 23:17:24 +03:00
phrase that does not permit other NPs to be nested within it so no
NP-level coordination, no prepositional phrases, and no relative
clauses.
2017-05-18 23:17:24 +03:00
YIELDS (Span): Noun chunks in the span.
DOCS: https://spacy.io/api/span#noun_chunks
2017-04-15 14:05:15 +03:00
"""
for span in self.doc.noun_chunks:
if span.start >= self.start and span.end <= self.end:
yield span
@property
def root(self):
"""The token with the shortest path to the root of the
sentence (or the root itself). If multiple tokens are equally
high in the tree, the first token is taken.
2016-11-01 14:25:36 +03:00
2017-05-18 23:17:24 +03:00
RETURNS (Token): The root token.
2017-04-01 11:19:01 +03:00
DOCS: https://spacy.io/api/span#root
2015-05-13 22:45:19 +03:00
"""
if "root" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["root"](self)
# This should probably be called 'head', and the other one called
# 'gov'. But we went with 'head' elsewhere, and now we're stuck =/
cdef int i
# First, we scan through the Span, and check whether there's a word
# with head==0, i.e. a sentence root. If so, we can return it. The
# longer the span, the more likely it contains a sentence root, and
# in this case we return in linear time.
for i in range(self.c.start, self.c.end):
if self.doc.c[i].head == 0:
return self.doc[i]
# If we don't have a sentence root, we do something that's not so
# algorithmically clever, but I think should be quite fast,
# especially for short spans.
# For each word, we count the path length, and arg min this measure.
# We could use better tree logic to save steps here...But I
# think this should be okay.
cdef int current_best = self.doc.length
cdef int root = -1
for i in range(self.c.start, self.c.end):
if self.c.start <= (i+self.doc.c[i].head) < self.c.end:
continue
words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length)
if words_to_root < current_best:
current_best = words_to_root
root = i
if root == -1:
return self.doc[self.c.start]
else:
return self.doc[root]
2017-04-01 11:19:01 +03:00
2019-12-13 17:54:58 +03:00
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None):
"""Create a `Span` object from the slice `span.text[start : end]`.
start (int): The index of the first character of the span.
end (int): The index of the first character after the span.
label (uint64 or string): A label to attach to the Span, e.g. for
named entities.
kb_id (uint64 or string): An ID from a KB to capture the meaning of a named entity.
vector (ndarray[ndim=1, dtype='float32']): A meaning representation of
the span.
RETURNS (Span): The newly constructed object.
"""
start_idx += self.c.start_char
end_idx += self.c.start_char
return self.doc.char_span(start_idx, end_idx, label=label, kb_id=kb_id, vector=vector)
2019-12-13 17:54:58 +03:00
@property
def conjuncts(self):
"""Tokens that are conjoined to the span's root.
RETURNS (tuple): A tuple of Token objects.
DOCS: https://spacy.io/api/span#lefts
"""
return self.root.conjuncts
@property
def lefts(self):
"""Tokens that are to the left of the span, whose head is within the
2017-05-18 23:17:24 +03:00
`Span`.
2017-04-01 11:19:01 +03:00
2017-05-18 23:17:24 +03:00
YIELDS (Token):A left-child of a token of the span.
DOCS: https://spacy.io/api/span#lefts
2016-11-01 14:25:36 +03:00
"""
for token in reversed(self): # Reverse, so we get tokens in order
for left in token.lefts:
if left.i < self.start:
yield left
2015-05-13 22:45:19 +03:00
@property
def rights(self):
2017-05-18 23:17:24 +03:00
"""Tokens that are to the right of the Span, whose head is within the
`Span`.
2017-04-01 11:19:01 +03:00
2017-05-18 23:17:24 +03:00
YIELDS (Token): A right-child of a token of the span.
DOCS: https://spacy.io/api/span#rights
2016-11-01 14:25:36 +03:00
"""
for token in self:
for right in token.rights:
if right.i >= self.end:
yield right
2015-05-13 22:45:19 +03:00
@property
def n_lefts(self):
"""The number of tokens that are to the left of the span, whose
heads are within the span.
RETURNS (int): The number of leftward immediate children of the
span, in the syntactic dependency parse.
DOCS: https://spacy.io/api/span#n_lefts
"""
return len(list(self.lefts))
@property
def n_rights(self):
"""The number of tokens that are to the right of the span, whose
heads are within the span.
RETURNS (int): The number of rightward immediate children of the
span, in the syntactic dependency parse.
DOCS: https://spacy.io/api/span#n_rights
"""
return len(list(self.rights))
@property
def subtree(self):
"""Tokens within the span and tokens which descend from them.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A token within the span, or a descendant from it.
DOCS: https://spacy.io/api/span#subtree
2016-11-01 14:25:36 +03:00
"""
for word in self.lefts:
yield from word.subtree
yield from self
for word in self.rights:
yield from word.subtree
2015-07-09 18:30:58 +03:00
property start:
def __get__(self):
return self.c.start
def __set__(self, int start):
if start < 0:
raise IndexError("TODO")
self.c.start = start
property end:
def __get__(self):
return self.c.end
def __set__(self, int end):
if end < 0:
raise IndexError("TODO")
self.c.end = end
property start_char:
def __get__(self):
return self.c.start_char
def __set__(self, int start_char):
if start_char < 0:
raise IndexError("TODO")
self.c.start_char = start_char
property end_char:
def __get__(self):
return self.c.end_char
def __set__(self, int end_char):
if end_char < 0:
raise IndexError("TODO")
self.c.end_char = end_char
property label:
def __get__(self):
return self.c.label
def __set__(self, attr_t label):
self.c.label = label
property kb_id:
def __get__(self):
return self.c.kb_id
def __set__(self, attr_t kb_id):
self.c.kb_id = kb_id
property ent_id:
"""RETURNS (uint64): The entity ID."""
def __get__(self):
return self.root.ent_id
def __set__(self, hash_t key):
2020-10-04 12:16:31 +03:00
raise NotImplementedError(Errors.E200.format(attr="ent_id"))
2017-05-18 23:17:24 +03:00
property ent_id_:
2020-05-24 18:20:58 +03:00
"""RETURNS (str): The (string) entity ID."""
def __get__(self):
return self.root.ent_id_
def __set__(self, str key):
2020-10-04 12:16:31 +03:00
raise NotImplementedError(Errors.E200.format(attr="ent_id_"))
@property
def orth_(self):
"""Verbatim text content (identical to `Span.text`). Exists mostly for
consistency with other attributes.
2020-05-24 18:20:58 +03:00
RETURNS (str): The span's text."""
return self.text
@property
def lemma_(self):
2020-05-24 18:20:58 +03:00
"""RETURNS (str): The span's lemma."""
return "".join([t.lemma_ + t.whitespace_ for t in self]).strip()
2017-03-11 03:50:02 +03:00
property label_:
2020-05-24 18:20:58 +03:00
"""RETURNS (str): The span's label."""
def __get__(self):
2015-09-29 16:03:55 +03:00
return self.doc.vocab.strings[self.label]
def __set__(self, str label_):
self.label = self.doc.vocab.strings.add(label_)
2019-03-14 17:48:40 +03:00
property kb_id_:
2020-05-24 18:20:58 +03:00
"""RETURNS (str): The named entity's KB ID."""
2019-03-14 17:48:40 +03:00
def __get__(self):
return self.doc.vocab.strings[self.kb_id]
2019-03-15 17:00:53 +03:00
def __set__(self, str kb_id_):
self.kb_id = self.doc.vocab.strings.add(kb_id_)
2019-03-14 17:48:40 +03:00
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
# Don't allow spaces to be the root, if there are
# better candidates
if Lexeme.c_check_flag(token.lex, IS_SPACE) and token.l_kids == 0 and token.r_kids == 0:
return sent_length-1
if Lexeme.c_check_flag(token.lex, IS_PUNCT) and token.l_kids == 0 and token.r_kids == 0:
return sent_length-1
cdef int n = 0
while token.head != 0:
token += token.head
n += 1
if n >= sent_length:
raise RuntimeError(Errors.E039)
return n