spaCy/spacy/tests/parser/test_parse.py

207 lines
6.9 KiB
Python
Raw Normal View History

import pytest
Update spaCy for thinc 8.0.0 (#4920) * Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 19:06:46 +03:00
from spacy.lang.en import English
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
from ..util import get_doc, apply_transition_sequence
Update spaCy for thinc 8.0.0 (#4920) * Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 19:06:46 +03:00
TRAIN_DATA = [
(
"They trade mortgage-backed securities.",
{
"heads": [1, 1, 4, 4, 5, 1, 1],
"deps": ["nsubj", "ROOT", "compound", "punct", "nmod", "dobj", "punct"],
},
),
(
"I like London and Berlin.",
{
"heads": [1, 1, 1, 2, 2, 1],
"deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
},
),
]
def test_parser_root(en_tokenizer):
text = "i don't have other assistance"
heads = [3, 2, 1, 0, 1, -2]
deps = ["nsubj", "aux", "neg", "ROOT", "amod", "dobj"]
tokens = en_tokenizer(text)
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
for t in doc:
assert t.dep != 0, t.text
@pytest.mark.xfail
@pytest.mark.parametrize("text", ["Hello"])
def test_parser_parse_one_word_sentence(en_tokenizer, en_parser, text):
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], heads=[0], deps=["ROOT"]
)
2016-05-02 17:08:11 +03:00
assert len(doc) == 1
2018-11-30 19:43:08 +03:00
with en_parser.step_through(doc) as _: # noqa: F841
2016-05-02 17:08:11 +03:00
pass
assert doc[0].dep != 0
@pytest.mark.xfail
def test_parser_initial(en_tokenizer, en_parser):
text = "I ate the pizza with anchovies."
2018-11-30 19:43:08 +03:00
# heads = [1, 0, 1, -2, -3, -1, -5]
transition = ["L-nsubj", "S", "L-det"]
tokens = en_tokenizer(text)
apply_transition_sequence(en_parser, tokens, transition)
assert tokens[0].head.i == 1
assert tokens[1].head.i == 1
assert tokens[2].head.i == 3
assert tokens[3].head.i == 3
def test_parser_parse_subtrees(en_tokenizer, en_parser):
text = "The four wheels on the bus turned quickly"
heads = [2, 1, 4, -1, 1, -2, 0, -1]
tokens = en_tokenizer(text)
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
assert len(list(doc[2].lefts)) == 2
assert len(list(doc[2].rights)) == 1
assert len(list(doc[2].children)) == 3
assert len(list(doc[5].lefts)) == 1
assert len(list(doc[5].rights)) == 0
assert len(list(doc[5].children)) == 1
assert len(list(doc[2].subtree)) == 6
def test_parser_merge_pp(en_tokenizer):
text = "A phrase with another phrase occurs"
heads = [1, 4, -1, 1, -2, 0]
deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT"]
tags = ["DT", "NN", "IN", "DT", "NN", "VBZ"]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], deps=deps, heads=heads, tags=tags
)
with doc.retokenize() as retokenizer:
for np in doc.noun_chunks:
retokenizer.merge(np, attrs={"lemma": np.lemma_})
assert doc[0].text == "A phrase"
assert doc[1].text == "with"
assert doc[2].text == "another phrase"
assert doc[3].text == "occurs"
@pytest.mark.xfail
def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
text = "a b c d e"
# right branching
transition = ["R-nsubj", "D", "R-nsubj", "R-nsubj", "D", "R-ROOT"]
tokens = en_tokenizer(text)
apply_transition_sequence(en_parser, tokens, transition)
assert tokens[0].n_lefts == 0
assert tokens[0].n_rights == 2
assert tokens[0].left_edge.i == 0
assert tokens[0].right_edge.i == 4
assert tokens[0].head.i == 0
assert tokens[1].n_lefts == 0
assert tokens[1].n_rights == 0
assert tokens[1].left_edge.i == 1
assert tokens[1].right_edge.i == 1
assert tokens[1].head.i == 0
assert tokens[2].n_lefts == 0
assert tokens[2].n_rights == 2
assert tokens[2].left_edge.i == 2
assert tokens[2].right_edge.i == 4
assert tokens[2].head.i == 0
assert tokens[3].n_lefts == 0
assert tokens[3].n_rights == 0
assert tokens[3].left_edge.i == 3
assert tokens[3].right_edge.i == 3
assert tokens[3].head.i == 2
assert tokens[4].n_lefts == 0
assert tokens[4].n_rights == 0
assert tokens[4].left_edge.i == 4
assert tokens[4].right_edge.i == 4
assert tokens[4].head.i == 2
# left branching
transition = ["S", "S", "S", "L-nsubj", "L-nsubj", "L-nsubj", "L-nsubj"]
tokens = en_tokenizer(text)
apply_transition_sequence(en_parser, tokens, transition)
assert tokens[0].n_lefts == 0
assert tokens[0].n_rights == 0
assert tokens[0].left_edge.i == 0
assert tokens[0].right_edge.i == 0
assert tokens[0].head.i == 4
assert tokens[1].n_lefts == 0
assert tokens[1].n_rights == 0
assert tokens[1].left_edge.i == 1
assert tokens[1].right_edge.i == 1
assert tokens[1].head.i == 4
assert tokens[2].n_lefts == 0
assert tokens[2].n_rights == 0
assert tokens[2].left_edge.i == 2
assert tokens[2].right_edge.i == 2
assert tokens[2].head.i == 4
assert tokens[3].n_lefts == 0
assert tokens[3].n_rights == 0
assert tokens[3].left_edge.i == 3
assert tokens[3].right_edge.i == 3
assert tokens[3].head.i == 4
assert tokens[4].n_lefts == 4
assert tokens[4].n_rights == 0
assert tokens[4].left_edge.i == 0
assert tokens[4].right_edge.i == 4
assert tokens[4].head.i == 4
def test_parser_set_sent_starts(en_vocab):
2019-12-21 21:04:17 +03:00
# fmt: off
words = ['Ein', 'Satz', '.', 'Außerdem', 'ist', 'Zimmer', 'davon', 'überzeugt', ',', 'dass', 'auch', 'epige-', '\n', 'netische', 'Mechanismen', 'eine', 'Rolle', 'spielen', ',', 'also', 'Vorgänge', ',', 'die', '\n', 'sich', 'darauf', 'auswirken', ',', 'welche', 'Gene', 'abgelesen', 'werden', 'und', '\n', 'welche', 'nicht', '.', '\n']
heads = [1, 0, -1, 27, 0, -1, 1, -3, -1, 8, 4, 3, -1, 1, 3, 1, 1, -11, -1, 1, -9, -1, 4, -1, 2, 1, -6, -1, 1, 2, 1, -6, -1, -1, -17, -31, -32, -1]
deps = ['nk', 'ROOT', 'punct', 'mo', 'ROOT', 'sb', 'op', 'pd', 'punct', 'cp', 'mo', 'nk', '', 'nk', 'sb', 'nk', 'oa', 're', 'punct', 'mo', 'app', 'punct', 'sb', '', 'oa', 'op', 'rc', 'punct', 'nk', 'sb', 'oc', 're', 'cd', '', 'oa', 'ng', 'punct', '']
2019-12-21 21:04:17 +03:00
# fmt: on
doc = get_doc(en_vocab, words=words, deps=deps, heads=heads)
for i in range(len(words)):
if i == 0 or i == 3:
2019-12-21 21:04:17 +03:00
assert doc[i].is_sent_start is True
else:
2019-12-21 21:04:17 +03:00
assert doc[i].is_sent_start is None
for sent in doc.sents:
for token in sent:
assert token.head in sent
Update spaCy for thinc 8.0.0 (#4920) * Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 19:06:46 +03:00
def test_overfitting():
# Simple test to try and quickly overfit the dependency parser - ensuring the ML models work correctly
nlp = English()
parser = nlp.create_pipe("parser")
for _, annotations in TRAIN_DATA:
for dep in annotations.get("deps", []):
parser.add_label(dep)
nlp.add_pipe(parser)
optimizer = nlp.begin_training()
for i in range(50):
losses = {}
nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
assert losses["parser"] < 0.00001
# test the trained model
test_text = "I like securities."
doc = nlp(test_text)
assert doc[0].dep_ is "nsubj"
assert doc[2].dep_ is "dobj"
assert doc[3].dep_ is "punct"