spaCy/spacy/tests/vocab_vectors/test_vectors.py

631 lines
22 KiB
Python
Raw Normal View History

💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
import numpy
import pytest
from numpy.testing import assert_allclose, assert_almost_equal, assert_equal
from thinc.api import NumpyOps, get_current_ops
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
from spacy.lang.en import English
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167) * 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 16:21:40 +03:00
from spacy.strings import hash_string # type: ignore
from spacy.tokenizer import Tokenizer
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
from spacy.tokens import Doc
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
from spacy.training.initialize import convert_vectors
from spacy.vectors import Vectors
from spacy.vocab import Vocab
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
2020-05-21 19:39:06 +03:00
from ..util import add_vecs_to_vocab, get_cosine, make_tempdir
OPS = get_current_ops()
2021-06-28 12:48:00 +03:00
@pytest.fixture
2017-06-05 13:32:49 +03:00
def strings():
return ["apple", "orange"]
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
2017-08-19 21:34:58 +03:00
@pytest.fixture
def vectors():
return [
("apple", OPS.asarray([1, 2, 3])),
("orange", OPS.asarray([-1, -2, -3])),
("and", OPS.asarray([-1, -1, -1])),
("juice", OPS.asarray([5, 5, 10])),
("pie", OPS.asarray([7, 6.3, 8.9])),
]
2017-08-19 21:34:58 +03:00
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
2017-06-05 13:32:49 +03:00
@pytest.fixture
def data():
return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype="f")
2017-06-05 13:32:49 +03:00
2019-10-18 12:27:38 +03:00
@pytest.fixture
def most_similar_vectors_data():
2019-10-18 12:27:38 +03:00
return numpy.asarray(
[[0.0, 1.0, 2.0], [1.0, -2.0, 4.0], [1.0, 1.0, -1.0], [2.0, 3.0, 1.0]],
dtype="f",
)
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
@pytest.fixture
def most_similar_vectors_keys():
return ["a", "b", "c", "d"]
@pytest.fixture
def resize_data():
return numpy.asarray([[0.0, 1.0], [2.0, 3.0]], dtype="f")
2017-06-05 13:32:49 +03:00
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
2017-08-19 21:34:58 +03:00
@pytest.fixture()
def vocab(en_vocab, vectors):
add_vecs_to_vocab(en_vocab, vectors)
return en_vocab
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
@pytest.fixture()
def tokenizer_v(vocab):
return Tokenizer(vocab, {}, None, None, None)
@pytest.mark.issue(1518)
def test_issue1518():
"""Test vectors.resize() works."""
vectors = Vectors(shape=(10, 10))
vectors.add("hello", row=2)
vectors.resize((5, 9))
@pytest.mark.issue(1539)
def test_issue1539():
"""Ensure vectors.resize() doesn't try to modify dictionary during iteration."""
v = Vectors(shape=(10, 10), keys=[5, 3, 98, 100])
v.resize((100, 100))
@pytest.mark.issue(1807)
def test_issue1807():
"""Test vocab.set_vector also adds the word to the vocab."""
vocab = Vocab(vectors_name="test_issue1807")
assert "hello" not in vocab
vocab.set_vector("hello", numpy.ones((50,), dtype="f"))
assert "hello" in vocab
@pytest.mark.issue(2871)
def test_issue2871():
"""Test that vectors recover the correct key for spaCy reserved words."""
words = ["dog", "cat", "SUFFIX"]
vocab = Vocab(vectors_name="test_issue2871")
vocab.vectors.resize(shape=(3, 10))
vector_data = numpy.zeros((3, 10), dtype="f")
for word in words:
_ = vocab[word] # noqa: F841
vocab.set_vector(word, vector_data[0])
vocab.vectors.name = "dummy_vectors"
assert vocab["dog"].rank == 0
assert vocab["cat"].rank == 1
assert vocab["SUFFIX"].rank == 2
assert vocab.vectors.find(key="dog") == 0
assert vocab.vectors.find(key="cat") == 1
assert vocab.vectors.find(key="SUFFIX") == 2
@pytest.mark.issue(3412)
def test_issue3412():
data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f")
vectors = Vectors(data=data, keys=["A", "B", "C"])
keys, best_rows, scores = vectors.most_similar(
numpy.asarray([[9, 8, 7], [0, 0, 0]], dtype="f")
)
assert best_rows[0] == 2
@pytest.mark.issue(4725)
def test_issue4725_2():
if isinstance(get_current_ops, NumpyOps):
# ensures that this runs correctly and doesn't hang or crash because of the global vectors
# if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows),
# or because of issues with pickling the NER (cf test_issue4725_1)
vocab = Vocab(vectors_name="test_vocab_add_vector")
data = numpy.ndarray((5, 3), dtype="f")
data[0] = 1.0
data[1] = 2.0
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
nlp = English(vocab=vocab)
nlp.add_pipe("ner")
nlp.initialize()
docs = ["Kurt is in London."] * 10
for _ in nlp.pipe(docs, batch_size=2, n_process=2):
pass
def test_init_vectors_with_resize_shape(strings, resize_data):
v = Vectors(shape=(len(strings), 3))
v.resize(shape=resize_data.shape)
assert v.shape == resize_data.shape
assert v.shape != (len(strings), 3)
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
def test_init_vectors_with_resize_data(data, resize_data):
v = Vectors(data=data)
v.resize(shape=resize_data.shape)
assert v.shape == resize_data.shape
assert v.shape != data.shape
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
def test_get_vector_resize(strings, data):
strings = [hash_string(s) for s in strings]
# decrease vector dimension (truncate)
v = Vectors(data=data)
resized_dim = v.shape[1] - 1
v.resize(shape=(v.shape[0], resized_dim))
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(data[0, :resized_dim])
assert list(v[strings[1]]) == list(data[1, :resized_dim])
# increase vector dimension (pad with zeros)
v = Vectors(data=data)
resized_dim = v.shape[1] + 1
v.resize(shape=(v.shape[0], resized_dim))
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(data[0]) + [0]
assert list(v[strings[1]]) == list(data[1]) + [0]
2017-08-19 21:34:58 +03:00
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
2017-06-05 13:32:49 +03:00
def test_init_vectors_with_data(strings, data):
2017-10-31 20:25:08 +03:00
v = Vectors(data=data)
2017-06-05 13:32:49 +03:00
assert v.shape == data.shape
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
2017-10-31 20:25:08 +03:00
def test_init_vectors_with_shape(strings):
v = Vectors(shape=(len(strings), 3))
2017-06-05 13:32:49 +03:00
assert v.shape == (len(strings), 3)
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
assert v.is_full is False
2017-06-05 13:32:49 +03:00
def test_get_vector(strings, data):
2017-10-31 20:25:08 +03:00
v = Vectors(data=data)
2017-11-01 15:24:47 +03:00
strings = [hash_string(s) for s in strings]
2017-10-31 20:25:08 +03:00
for i, string in enumerate(strings):
v.add(string, row=i)
2017-06-05 13:32:49 +03:00
assert list(v[strings[0]]) == list(data[0])
assert list(v[strings[0]]) != list(data[1])
assert list(v[strings[1]]) != list(data[0])
def test_set_vector(strings, data):
orig = data.copy()
2017-10-31 20:25:08 +03:00
v = Vectors(data=data)
2017-11-01 15:24:47 +03:00
strings = [hash_string(s) for s in strings]
2017-10-31 20:25:08 +03:00
for i, string in enumerate(strings):
v.add(string, row=i)
2017-06-05 13:32:49 +03:00
assert list(v[strings[0]]) == list(orig[0])
assert list(v[strings[0]]) != list(orig[1])
v[strings[0]] = data[1]
assert list(v[strings[0]]) == list(orig[1])
assert list(v[strings[0]]) != list(orig[0])
def test_vectors_most_similar(most_similar_vectors_data, most_similar_vectors_keys):
v = Vectors(data=most_similar_vectors_data, keys=most_similar_vectors_keys)
_, best_rows, _ = v.most_similar(v.data, batch_size=2, n=2, sort=True)
assert all(row[0] == i for i, row in enumerate(best_rows))
with pytest.raises(ValueError):
v.most_similar(v.data, batch_size=2, n=10, sort=True)
2019-10-22 19:18:43 +03:00
def test_vectors_most_similar_identical():
"""Test that most similar identical vectors are assigned a score of 1.0."""
data = numpy.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
keys, _, scores = v.most_similar(numpy.asarray([[4, 2, 2, 2]], dtype="f"))
assert scores[0][0] == 1.0 # not 1.0000002
data = numpy.asarray([[1, 2, 3], [1, 2, 3], [1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
keys, _, scores = v.most_similar(numpy.asarray([[1, 2, 3]], dtype="f"))
assert scores[0][0] == 1.0 # not 0.9999999
@pytest.mark.parametrize("text", ["apple and orange"])
2017-08-19 21:34:58 +03:00
def test_vectors_token_vector(tokenizer_v, vectors, text):
doc = tokenizer_v(text)
assert vectors[0][0] == doc[0].text
assert all([a == b for a, b in zip(vectors[0][1], doc[0].vector)])
assert vectors[1][0] == doc[2].text
assert all([a == b for a, b in zip(vectors[1][1], doc[2].vector)])
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text", ["apple", "orange"])
2017-08-19 21:34:58 +03:00
def test_vectors_lexeme_vector(vocab, text):
lex = vocab[text]
assert list(lex.vector)
assert lex.vector_norm
@pytest.mark.parametrize("text", [["apple", "and", "orange"]])
2017-08-19 21:34:58 +03:00
def test_vectors_doc_vector(vocab, text):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = Doc(vocab, words=text)
2017-08-19 21:34:58 +03:00
assert list(doc.vector)
assert doc.vector_norm
@pytest.mark.parametrize("text", [["apple", "and", "orange"]])
2017-08-19 21:34:58 +03:00
def test_vectors_span_vector(vocab, text):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
span = Doc(vocab, words=text)[0:2]
2017-08-19 21:34:58 +03:00
assert list(span.vector)
assert span.vector_norm
@pytest.mark.parametrize("text", ["apple orange"])
2017-08-19 21:34:58 +03:00
def test_vectors_token_token_similarity(tokenizer_v, text):
doc = tokenizer_v(text)
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
assert -1.0 < doc[0].similarity(doc[1]) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text1,text2", [("apple", "orange")])
2017-08-19 21:34:58 +03:00
def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2):
token = tokenizer_v(text1)
lex = vocab[text2]
assert token.similarity(lex) == lex.similarity(token)
assert -1.0 < token.similarity(lex) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
2017-08-19 21:34:58 +03:00
def test_vectors_token_span_similarity(vocab, text):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = Doc(vocab, words=text)
2017-08-19 21:34:58 +03:00
assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0])
assert -1.0 < doc[0].similarity(doc[1:3]) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
2017-08-19 21:34:58 +03:00
def test_vectors_token_doc_similarity(vocab, text):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = Doc(vocab, words=text)
2017-08-19 21:34:58 +03:00
assert doc[0].similarity(doc) == doc.similarity(doc[0])
assert -1.0 < doc[0].similarity(doc) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
2017-08-19 21:34:58 +03:00
def test_vectors_lexeme_span_similarity(vocab, text):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = Doc(vocab, words=text)
2017-08-19 21:34:58 +03:00
lex = vocab[text[0]]
assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex)
assert -1.0 < doc.similarity(doc[1:3]) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text1,text2", [("apple", "orange")])
2017-08-19 21:34:58 +03:00
def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2):
lex1 = vocab[text1]
lex2 = vocab[text2]
assert lex1.similarity(lex2) == lex2.similarity(lex1)
assert -1.0 < lex1.similarity(lex2) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
2017-08-19 21:34:58 +03:00
def test_vectors_lexeme_doc_similarity(vocab, text):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = Doc(vocab, words=text)
2017-08-19 21:34:58 +03:00
lex = vocab[text[0]]
assert lex.similarity(doc) == doc.similarity(lex)
assert -1.0 < lex.similarity(doc) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
2017-08-19 21:34:58 +03:00
def test_vectors_span_span_similarity(vocab, text):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = Doc(vocab, words=text)
2019-02-10 16:02:19 +03:00
with pytest.warns(UserWarning):
assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2])
assert -1.0 < doc[0:2].similarity(doc[1:3]) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
2017-08-19 21:34:58 +03:00
def test_vectors_span_doc_similarity(vocab, text):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc = Doc(vocab, words=text)
2019-02-10 16:02:19 +03:00
with pytest.warns(UserWarning):
assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2])
assert -1.0 < doc[0:2].similarity(doc) < 1.0
2017-08-19 21:34:58 +03:00
@pytest.mark.parametrize(
"text1,text2", [(["apple", "and", "apple", "pie"], ["orange", "juice"])]
)
2017-08-19 21:34:58 +03:00
def test_vectors_doc_doc_similarity(vocab, text1, text2):
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
doc1 = Doc(vocab, words=text1)
doc2 = Doc(vocab, words=text2)
2017-08-19 21:34:58 +03:00
assert doc1.similarity(doc2) == doc2.similarity(doc1)
assert -1.0 < doc1.similarity(doc2) < 1.0
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
def test_vocab_add_vector():
2019-09-16 16:16:54 +03:00
vocab = Vocab(vectors_name="test_vocab_add_vector")
data = OPS.xp.ndarray((5, 3), dtype="f")
data[0] = 1.0
data[1] = 2.0
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
cat = vocab["cat"]
assert list(cat.vector) == [1.0, 1.0, 1.0]
dog = vocab["dog"]
assert list(dog.vector) == [2.0, 2.0, 2.0]
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
with pytest.raises(ValueError):
vocab.vectors.add(vocab["hamster"].orth, row=1000000)
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
def test_vocab_prune_vectors():
2019-09-16 16:16:54 +03:00
vocab = Vocab(vectors_name="test_vocab_prune_vectors")
2018-11-30 19:43:08 +03:00
_ = vocab["cat"] # noqa: F841
_ = vocab["dog"] # noqa: F841
_ = vocab["kitten"] # noqa: F841
data = OPS.xp.ndarray((5, 3), dtype="f")
data[0] = OPS.asarray([1.0, 1.2, 1.1])
data[1] = OPS.asarray([0.3, 1.3, 1.0])
data[2] = OPS.asarray([0.9, 1.22, 1.05])
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
vocab.set_vector("kitten", data[2])
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
remap = vocab.prune_vectors(2, batch_size=2)
assert list(remap.keys()) == ["kitten"]
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-25 00:38:44 +03:00
neighbour, similarity = list(remap.values())[0]
assert neighbour == "cat", remap
cosine = get_cosine(data[0], data[2])
assert_allclose(float(similarity), cosine, atol=1e-4, rtol=1e-3)
Reduce stored lexemes data, move feats to lookups (#5238) * Reduce stored lexemes data, move feats to lookups * Move non-derivable lexemes features (`norm / cluster / prob`) to `spacy-lookups-data` as lookups * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in lookups only * Remove serialization of lexemes data as `vocab/lexemes.bin` * Remove `SerializedLexemeC` * Remove `Lexeme.to_bytes/from_bytes` * Modify normalization exception loading: * Always create `Vocab.lookups` table `lexeme_norm` for normalization exceptions * Load base exceptions from `lang.norm_exceptions`, but load language-specific exceptions from lookups * Set `lex_attr_getter[NORM]` including new lookups table in `BaseDefaults.create_vocab()` and when deserializing `Vocab` * Remove all cached lexemes when deserializing vocab to override existing normalizations with the new normalizations (as a replacement for the previous step that replaced all lexemes data with the deserialized data) * Skip English normalization test Skip English normalization test because the data is now in `spacy-lookups-data`. * Remove norm exceptions Moved to spacy-lookups-data. * Move norm exceptions test to spacy-lookups-data * Load extra lookups from spacy-lookups-data lazily Load extra lookups (currently for cluster and prob) lazily from the entry point `lg_extra` as `Vocab.lookups_extra`. * Skip creating lexeme cache on load To improve model loading times, do not create the full lexeme cache when loading. The lexemes will be created on demand when processing. * Identify numeric values in Lexeme.set_attrs() With the removal of a special case for `PROB`, also identify `float` to avoid trying to convert it with the `StringStore`. * Skip lexeme cache init in from_bytes * Unskip and update lookups tests for python3.6+ * Update vocab pickle to include lookups_extra * Update vocab serialization tests Check strings rather than lexemes since lexemes aren't initialized automatically, account for addition of "_SP". * Re-skip lookups test because of python3.5 * Skip PROB/float values in Lexeme.set_attrs * Convert is_oov from lexeme flag to lex in vectors Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether the lexeme has a vector. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-05-19 16:59:14 +03:00
def test_vectors_serialize():
data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
b = v.to_bytes()
v_r = Vectors()
v_r.from_bytes(b)
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
assert v.key2row == v_r.key2row
v.resize((5, 4))
v_r.resize((5, 4))
row = v.add("D", vector=OPS.asarray([1, 2, 3, 4], dtype="f"))
row_r = v_r.add("D", vector=OPS.asarray([1, 2, 3, 4], dtype="f"))
assert row == row_r
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
assert v.is_full == v_r.is_full
with make_tempdir() as d:
v.to_disk(d)
v_r.from_disk(d)
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
assert v.key2row == v_r.key2row
v.resize((5, 4))
v_r.resize((5, 4))
row = v.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f"))
row_r = v_r.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f"))
assert row == row_r
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
2020-05-21 15:14:01 +03:00
Reduce stored lexemes data, move feats to lookups (#5238) * Reduce stored lexemes data, move feats to lookups * Move non-derivable lexemes features (`norm / cluster / prob`) to `spacy-lookups-data` as lookups * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in lookups only * Remove serialization of lexemes data as `vocab/lexemes.bin` * Remove `SerializedLexemeC` * Remove `Lexeme.to_bytes/from_bytes` * Modify normalization exception loading: * Always create `Vocab.lookups` table `lexeme_norm` for normalization exceptions * Load base exceptions from `lang.norm_exceptions`, but load language-specific exceptions from lookups * Set `lex_attr_getter[NORM]` including new lookups table in `BaseDefaults.create_vocab()` and when deserializing `Vocab` * Remove all cached lexemes when deserializing vocab to override existing normalizations with the new normalizations (as a replacement for the previous step that replaced all lexemes data with the deserialized data) * Skip English normalization test Skip English normalization test because the data is now in `spacy-lookups-data`. * Remove norm exceptions Moved to spacy-lookups-data. * Move norm exceptions test to spacy-lookups-data * Load extra lookups from spacy-lookups-data lazily Load extra lookups (currently for cluster and prob) lazily from the entry point `lg_extra` as `Vocab.lookups_extra`. * Skip creating lexeme cache on load To improve model loading times, do not create the full lexeme cache when loading. The lexemes will be created on demand when processing. * Identify numeric values in Lexeme.set_attrs() With the removal of a special case for `PROB`, also identify `float` to avoid trying to convert it with the `StringStore`. * Skip lexeme cache init in from_bytes * Unskip and update lookups tests for python3.6+ * Update vocab pickle to include lookups_extra * Update vocab serialization tests Check strings rather than lexemes since lexemes aren't initialized automatically, account for addition of "_SP". * Re-skip lookups test because of python3.5 * Skip PROB/float values in Lexeme.set_attrs * Convert is_oov from lexeme flag to lex in vectors Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether the lexeme has a vector. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-05-19 16:59:14 +03:00
def test_vector_is_oov():
vocab = Vocab(vectors_name="test_vocab_is_oov")
data = OPS.xp.ndarray((5, 3), dtype="f")
Reduce stored lexemes data, move feats to lookups (#5238) * Reduce stored lexemes data, move feats to lookups * Move non-derivable lexemes features (`norm / cluster / prob`) to `spacy-lookups-data` as lookups * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in lookups only * Remove serialization of lexemes data as `vocab/lexemes.bin` * Remove `SerializedLexemeC` * Remove `Lexeme.to_bytes/from_bytes` * Modify normalization exception loading: * Always create `Vocab.lookups` table `lexeme_norm` for normalization exceptions * Load base exceptions from `lang.norm_exceptions`, but load language-specific exceptions from lookups * Set `lex_attr_getter[NORM]` including new lookups table in `BaseDefaults.create_vocab()` and when deserializing `Vocab` * Remove all cached lexemes when deserializing vocab to override existing normalizations with the new normalizations (as a replacement for the previous step that replaced all lexemes data with the deserialized data) * Skip English normalization test Skip English normalization test because the data is now in `spacy-lookups-data`. * Remove norm exceptions Moved to spacy-lookups-data. * Move norm exceptions test to spacy-lookups-data * Load extra lookups from spacy-lookups-data lazily Load extra lookups (currently for cluster and prob) lazily from the entry point `lg_extra` as `Vocab.lookups_extra`. * Skip creating lexeme cache on load To improve model loading times, do not create the full lexeme cache when loading. The lexemes will be created on demand when processing. * Identify numeric values in Lexeme.set_attrs() With the removal of a special case for `PROB`, also identify `float` to avoid trying to convert it with the `StringStore`. * Skip lexeme cache init in from_bytes * Unskip and update lookups tests for python3.6+ * Update vocab pickle to include lookups_extra * Update vocab serialization tests Check strings rather than lexemes since lexemes aren't initialized automatically, account for addition of "_SP". * Re-skip lookups test because of python3.5 * Skip PROB/float values in Lexeme.set_attrs * Convert is_oov from lexeme flag to lex in vectors Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether the lexeme has a vector. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-05-19 16:59:14 +03:00
data[0] = 1.0
data[1] = 2.0
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
assert vocab["cat"].is_oov is False
assert vocab["dog"].is_oov is False
assert vocab["hamster"].is_oov is True
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
def test_init_vectors_unset():
v = Vectors(shape=(10, 10))
assert v.is_full is False
assert v.shape == (10, 10)
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
with pytest.raises(ValueError):
v = Vectors(shape=(10, 10), mode="floret")
v = Vectors(data=OPS.xp.zeros((10, 10)), mode="floret", hash_count=1)
assert v.is_full is True
def test_vectors_clear():
data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
assert v.is_full is True
assert hash_string("A") in v
v.clear()
# no keys
assert v.key2row == {}
assert list(v) == []
assert v.is_full is False
assert "A" not in v
with pytest.raises(KeyError):
v["A"]
def test_vectors_get_batch():
data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
# check with mixed int/str keys
words = ["C", "B", "A", v.strings["B"]]
rows = v.find(keys=words)
vecs = OPS.as_contig(v.data[rows])
assert_equal(OPS.to_numpy(vecs), OPS.to_numpy(v.get_batch(words)))
def test_vectors_deduplicate():
data = OPS.asarray([[1, 1], [2, 2], [3, 4], [1, 1], [3, 4]], dtype="f")
v = Vectors(data=data, keys=["a1", "b1", "c1", "a2", "c2"])
vocab = Vocab()
vocab.vectors = v
# duplicate vectors do not use the same keys
assert (
vocab.vectors.key2row[v.strings["a1"]] != vocab.vectors.key2row[v.strings["a2"]]
)
assert (
vocab.vectors.key2row[v.strings["c1"]] != vocab.vectors.key2row[v.strings["c2"]]
)
vocab.deduplicate_vectors()
# there are three unique vectors
assert vocab.vectors.shape[0] == 3
# the uniqued data is the same as the deduplicated data
assert_equal(
numpy.unique(OPS.to_numpy(vocab.vectors.data), axis=0),
OPS.to_numpy(vocab.vectors.data),
)
# duplicate vectors use the same keys now
assert (
vocab.vectors.key2row[v.strings["a1"]] == vocab.vectors.key2row[v.strings["a2"]]
)
assert (
vocab.vectors.key2row[v.strings["c1"]] == vocab.vectors.key2row[v.strings["c2"]]
)
# deduplicating again makes no changes
vocab_b = vocab.to_bytes()
vocab.deduplicate_vectors()
assert vocab_b == vocab.to_bytes()
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
@pytest.fixture()
def floret_vectors_hashvec_str():
"""The full hashvec table from floret with the settings:
bucket 10, dim 10, minn 2, maxn 3, hash count 2, hash seed 2166136261,
bow <, eow >"""
return """10 10 2 3 2 2166136261 < >
0 -2.2611 3.9302 2.6676 -11.233 0.093715 -10.52 -9.6463 -0.11853 2.101 -0.10145
1 -3.12 -1.7981 10.7 -6.171 4.4527 10.967 9.073 6.2056 -6.1199 -2.0402
2 9.5689 5.6721 -8.4832 -1.2249 2.1871 -3.0264 -2.391 -5.3308 -3.2847 -4.0382
3 3.6268 4.2759 -1.7007 1.5002 5.5266 1.8716 -12.063 0.26314 2.7645 2.4929
4 -11.683 -7.7068 2.1102 2.214 7.2202 0.69799 3.2173 -5.382 -2.0838 5.0314
5 -4.3024 8.0241 2.0714 -1.0174 -0.28369 1.7622 7.8797 -1.7795 6.7541 5.6703
6 8.3574 -5.225 8.6529 8.5605 -8.9465 3.767 -5.4636 -1.4635 -0.98947 -0.58025
7 -10.01 3.3894 -4.4487 1.1669 -11.904 6.5158 4.3681 0.79913 -6.9131 -8.687
8 -5.4576 7.1019 -8.8259 1.7189 4.955 -8.9157 -3.8905 -0.60086 -2.1233 5.892
9 8.0678 -4.4142 3.6236 4.5889 -2.7611 2.4455 0.67096 -4.2822 2.0875 4.6274
"""
@pytest.fixture()
def floret_vectors_vec_str():
"""The top 10 rows from floret with the settings above, to verify
that the spacy floret vectors are equivalent to the fasttext static
vectors."""
return """10 10
, -5.7814 2.6918 0.57029 -3.6985 -2.7079 1.4406 1.0084 1.7463 -3.8625 -3.0565
. 3.8016 -1.759 0.59118 3.3044 -0.72975 0.45221 -2.1412 -3.8933 -2.1238 -0.47409
der 0.08224 2.6601 -1.173 1.1549 -0.42821 -0.097268 -2.5589 -1.609 -0.16968 0.84687
die -2.8781 0.082576 1.9286 -0.33279 0.79488 3.36 3.5609 -0.64328 -2.4152 0.17266
und 2.1558 1.8606 -1.382 0.45424 -0.65889 1.2706 0.5929 -2.0592 -2.6949 -1.6015
" -1.1242 1.4588 -1.6263 1.0382 -2.7609 -0.99794 -0.83478 -1.5711 -1.2137 1.0239
in -0.87635 2.0958 4.0018 -2.2473 -1.2429 2.3474 1.8846 0.46521 -0.506 -0.26653
von -0.10589 1.196 1.1143 -0.40907 -1.0848 -0.054756 -2.5016 -1.0381 -0.41598 0.36982
( 0.59263 2.1856 0.67346 1.0769 1.0701 1.2151 1.718 -3.0441 2.7291 3.719
) 0.13812 3.3267 1.657 0.34729 -3.5459 0.72372 0.63034 -1.6145 1.2733 0.37798
"""
def test_floret_vectors(floret_vectors_vec_str, floret_vectors_hashvec_str):
nlp = English()
nlp_plain = English()
# load both vec and hashvec tables
with make_tempdir() as tmpdir:
p = tmpdir / "test.hashvec"
with open(p, "w") as fileh:
fileh.write(floret_vectors_hashvec_str)
convert_vectors(nlp, p, truncate=0, prune=-1, mode="floret")
p = tmpdir / "test.vec"
with open(p, "w") as fileh:
fileh.write(floret_vectors_vec_str)
convert_vectors(nlp_plain, p, truncate=0, prune=-1)
word = "der"
# ngrams: full padded word + padded 2-grams + padded 3-grams
ngrams = nlp.vocab.vectors._get_ngrams(word)
assert ngrams == ["<der>", "<d", "de", "er", "r>", "<de", "der", "er>"]
# rows: 2 rows per ngram
rows = OPS.xp.asarray(
[
h % nlp.vocab.vectors.shape[0]
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
for ngram in ngrams
for h in nlp.vocab.vectors._get_ngram_hashes(ngram)
],
dtype="uint32",
)
assert_equal(
OPS.to_numpy(rows),
numpy.asarray([5, 6, 7, 5, 8, 2, 8, 9, 3, 3, 4, 6, 7, 3, 0, 2]),
)
assert len(rows) == len(ngrams) * nlp.vocab.vectors.hash_count
# all vectors are equivalent for plain static table vs. hash ngrams
for word in nlp_plain.vocab.vectors:
word = nlp_plain.vocab.strings.as_string(word)
assert_almost_equal(
nlp.vocab[word].vector, nlp_plain.vocab[word].vector, decimal=3
)
# every word has a vector
assert nlp.vocab[word * 5].has_vector
# n_keys is -1 for floret
assert nlp_plain.vocab.vectors.n_keys > 0
assert nlp.vocab.vectors.n_keys == -1
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
# check that single and batched vector lookups are identical
words = [s for s in nlp_plain.vocab.vectors]
single_vecs = OPS.to_numpy(OPS.asarray([nlp.vocab[word].vector for word in words]))
batch_vecs = OPS.to_numpy(nlp.vocab.vectors.get_batch(words))
assert_equal(single_vecs, batch_vecs)
# an empty key returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab[""].vector),
numpy.zeros((nlp.vocab.vectors.shape[0],)),
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
)
# an empty batch returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.get_batch([""])),
numpy.zeros((1, nlp.vocab.vectors.shape[0])),
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
)
# an empty key within a batch returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.get_batch(["a", "", "b"])[1]),
numpy.zeros((nlp.vocab.vectors.shape[0],)),
Add support for floret vectors (#8909) * Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
2021-10-27 15:08:31 +03:00
)
# the loaded ngram vector table cannot be modified
# except for clear: warning, then return without modifications
vector = list(range(nlp.vocab.vectors.shape[1]))
orig_bytes = nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.set_vector("the", vector)
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab[word].vector = vector
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.vectors.add("the", row=6)
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.vectors.resize(shape=(100, 10))
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.raises(ValueError):
nlp.vocab.vectors.clear()
# data and settings are serialized correctly
with make_tempdir() as d:
nlp.vocab.to_disk(d)
vocab_r = Vocab()
vocab_r.from_disk(d)
assert nlp.vocab.vectors.to_bytes() == vocab_r.vectors.to_bytes()
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.data), OPS.to_numpy(vocab_r.vectors.data)
)
assert_equal(nlp.vocab.vectors._get_cfg(), vocab_r.vectors._get_cfg())
assert_almost_equal(
OPS.to_numpy(nlp.vocab[word].vector),
OPS.to_numpy(vocab_r[word].vector),
decimal=6,
)