spaCy/spacy/syntax/parser.pyx

369 lines
13 KiB
Cython
Raw Normal View History

# cython: infer_types=True
2014-12-16 14:44:43 +03:00
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
2016-02-05 14:20:42 +03:00
cimport cython.parallel
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
2015-06-02 19:38:41 +03:00
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
2014-12-16 14:44:43 +03:00
import os.path
from os import path
2014-12-16 14:44:43 +03:00
import shutil
import json
import sys
from .nonproj import PseudoProjectivity
2014-12-16 14:44:43 +03:00
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
from thinc.structs cimport SparseArrayC, ExampleC
2016-02-01 05:08:42 +03:00
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
from thinc.structs cimport FeatureC
2014-12-16 14:44:43 +03:00
from util import Config
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
2014-12-16 14:44:43 +03:00
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
2014-12-16 14:44:43 +03:00
from ..gold cimport GoldParse
2014-12-16 14:44:43 +03:00
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from ._parse_features cimport *
from .stateclass cimport StateClass
from ._state cimport StateC
2014-12-16 14:44:43 +03:00
2015-04-19 11:31:31 +03:00
DEBUG = False
2014-12-16 14:44:43 +03:00
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
2014-12-17 13:09:29 +03:00
pf = _parse_features
2015-03-24 07:08:35 +03:00
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('embed'):
2015-06-27 05:18:47 +03:00
return (pf.words, pf.tags, pf.labels)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
2014-12-16 14:44:43 +03:00
def ParserFactory(transition_system):
return lambda strings, dir_: Parser(strings, dir_, transition_system)
cdef class ParserPerceptron(AveragedPerceptron):
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil:
fill_context(eg.atoms, state)
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
cdef class ParserNeuralNet(NeuralNet):
def __init__(self, nr_class, hidden_width=50, depth=2, word_width=50,
tag_width=20, dep_width=20, update_step='sgd', eta=0.01, rho=0.0):
#input_length = 3 * word_width + 5 * tag_width + 3 * dep_width
input_length = 12 * word_width + 7 * dep_width
widths = [input_length] + [hidden_width] * depth + [nr_class]
#vector_widths = [word_width, tag_width, dep_width]
#slots = [0] * 3 + [1] * 5 + [2] * 3
vector_widths = [word_width, dep_width]
slots = [0] * 12 + [1] * 7
NeuralNet.__init__(
self,
widths,
embed=(vector_widths, slots),
eta=eta,
rho=rho,
update_step=update_step)
@property
def nr_feat(self):
#return 3+5+3
return 12+7
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil:
fill_context(eg.atoms, state)
eg.nr_feat = 12 + 7
for j in range(eg.nr_feat):
eg.features[j].value = 1.0
eg.features[j].i = j
#eg.features[0].key = eg.atoms[S0w]
#eg.features[1].key = eg.atoms[S1w]
#eg.features[2].key = eg.atoms[N0w]
eg.features[0].key = eg.atoms[S2W]
eg.features[1].key = eg.atoms[S1W]
eg.features[2].key = eg.atoms[S0lW]
eg.features[3].key = eg.atoms[S0l2W]
eg.features[4].key = eg.atoms[S0W]
eg.features[5].key = eg.atoms[S0r2W]
eg.features[6].key = eg.atoms[S0rW]
eg.features[7].key = eg.atoms[N0lW]
eg.features[8].key = eg.atoms[N0l2W]
eg.features[9].key = eg.atoms[N0W]
eg.features[10].key = eg.atoms[N1W]
eg.features[11].key = eg.atoms[N2W]
eg.features[12].key = eg.atoms[S2L]
eg.features[13].key = eg.atoms[S1L]
eg.features[14].key = eg.atoms[S0l2L]
eg.features[15].key = eg.atoms[S0lL]
eg.features[16].key = eg.atoms[S0L]
eg.features[17].key = eg.atoms[S0r2L]
eg.features[18].key = eg.atoms[S0rL]
cdef class Parser:
def __init__(self, StringStore strings, transition_system, ParserNeuralNet model,
int projectivize = 0):
self.moves = transition_system
self.model = model
self._projectivize = projectivize
@classmethod
def from_dir(cls, model_dir, strings, transition_system):
if not os.path.exists(model_dir):
print >> sys.stderr, "Warning: No model found at", model_dir
elif not os.path.isdir(model_dir):
print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
cfg = Config.read(model_dir, 'config')
moves = transition_system(strings, cfg.labels)
model = ParserNeuralNet(moves.n_moves, hidden_width=cfg.hidden_width,
depth=cfg.depth, word_width=cfg.word_width,
tag_width=cfg.tag_width, dep_width=cfg.dep_width,
update_step=cfg.update_step,
eta=cfg.eta, rho=cfg.rho)
project = cfg.projectivize if hasattr(cfg,'projectivize') else False
if path.exists(path.join(model_dir, 'model')):
model.load(path.join(model_dir, 'model'))
return cls(strings, moves, model, project)
@classmethod
def load(cls, pkg_or_str_or_file, vocab):
# TODO
raise NotImplementedError(
"This should be here, but isn't yet =/. Use Parser.from_dir")
def __reduce__(self):
return (Parser, (self.moves.strings, self.moves, self.model), None, None)
def __call__(self, Doc tokens):
cdef int nr_class = self.moves.n_moves
cdef int nr_feat = self.model.nr_feat
2016-01-30 22:27:07 +03:00
with nogil:
self.parseC(tokens.c, tokens.length, nr_feat, nr_class)
2016-01-30 22:27:07 +03:00
# Check for KeyboardInterrupt etc. Untested
PyErr_CheckSignals()
self.moves.finalize_doc(tokens)
2016-01-30 22:27:07 +03:00
def pipe(self, stream, int batch_size=1000, int n_threads=2):
cdef Pool mem = Pool()
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
cdef Doc doc
cdef int i
cdef int nr_class = self.moves.n_moves
cdef int nr_feat = self.model.nr_feat
cdef int status
queue = []
for doc in stream:
doc_ptr[len(queue)] = doc.c
lengths[len(queue)] = doc.length
2016-02-05 21:37:50 +03:00
queue.append(doc)
if len(queue) == batch_size:
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
if status != 0:
with gil:
sent_str = queue[i].text
raise ValueError("Error parsing doc: %s" % sent_str)
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
queue = []
batch_size = len(queue)
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
if status != 0:
with gil:
sent_str = queue[i].text
raise ValueError("Error parsing doc: %s" % sent_str)
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
cdef Example py_eg = Example(nr_class=nr_class, nr_atom=CONTEXT_SIZE, nr_feat=nr_feat,
widths=self.model.widths)
cdef ExampleC* eg = py_eg.c
state = new StateC(tokens, length)
self.moves.initialize_state(state)
cdef int i
while not state.is_final():
self.model.set_featuresC(eg, state)
self.moves.set_valid(eg.is_valid, state)
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat, 1)
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
action = self.moves.c[guess]
if not eg.is_valid[guess]:
return 1
action.do(state, action.label)
py_eg.reset()
self.moves.finalize_state(state)
for i in range(length):
tokens[i] = state._sent[i]
del state
return 0
def train(self, Doc tokens, GoldParse gold):
self.moves.preprocess_gold(gold)
2015-11-03 16:15:14 +03:00
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
self.moves.initialize_state(stcls.c)
cdef Pool mem = Pool()
cdef Example eg = Example(
nr_class=self.moves.n_moves,
widths=self.model.widths,
nr_atom=CONTEXT_SIZE,
nr_feat=self.model.nr_feat)
2015-06-30 15:26:32 +03:00
cdef weight_t loss = 0
cdef Transition action
while not stcls.is_final():
self.model.set_featuresC(eg.c, stcls.c)
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
# Sets eg.c.scores, which Example uses to calculate eg.guess
self.model.updateC(eg.c)
action = self.moves.c[eg.guess]
action.do(stcls.c, action.label)
loss += eg.loss
eg.reset()
2015-06-30 15:26:32 +03:00
return loss
def step_through(self, Doc doc):
return StepwiseState(self, doc)
def from_transition_sequence(self, Doc doc, sequence):
with self.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_label(self, label):
for action in self.moves.action_types:
self.moves.add_action(action, label)
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc):
self.parser = parser
self.doc = doc
2015-11-03 16:15:14 +03:00
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
def predict(self):
self.eg.reset()
self.parser.model.set_featuresC(self.eg.c, self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
self.parser.model.set_scoresC(self.eg.c.scores,
self.eg.c.features, self.eg.c.nr_feat, 1)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name):
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
2015-08-10 06:58:43 +03:00
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
2015-08-10 06:58:43 +03:00
mode = i
score = scores[i]
return mode