spaCy/website/meta/sidebars.json

123 lines
5.2 KiB
JSON
Raw Normal View History

[
{
"section": "usage",
"items": [
{
"label": "Get started",
"items": [
{ "text": "Installation", "url": "/usage" },
{ "text": "Models & Languages", "url": "/usage/models" },
{ "text": "Facts & Figures", "url": "/usage/facts-figures" },
{ "text": "spaCy 101", "url": "/usage/spacy-101" },
2020-07-01 14:02:17 +03:00
{ "text": "New in v3.0", "url": "/usage/v3" }
]
},
{
"label": "Guides",
"items": [
{ "text": "Linguistic Features", "url": "/usage/linguistic-features" },
{ "text": "Rule-based Matching", "url": "/usage/rule-based-matching" },
{ "text": "Processing Pipelines", "url": "/usage/processing-pipelines" },
2020-07-05 17:11:16 +03:00
{ "text": "Vectors & Embeddings", "url": "/usage/vectors-embeddings" },
2020-07-03 17:48:21 +03:00
{ "text": "Training Models", "url": "/usage/training", "tag": "new" },
{ "text": "spaCy Projects", "url": "/usage/projects", "tag": "new" },
{ "text": "Saving & Loading", "url": "/usage/saving-loading" },
{ "text": "Visualizers", "url": "/usage/visualizers" }
]
},
{
2020-07-05 17:11:16 +03:00
"label": "Resources",
"items": [
{ "text": "Project Templates", "url": "https://github.com/explosion/projects" }
]
}
]
},
{
"section": "models",
"items": [
{
"label": "Models",
"items": [{ "text": "Overview", "url": "/models" }]
},
{
"label": "Core Models",
"items": []
},
{
"label": "Starter Models",
"items": []
}
]
},
{
"section": "api",
"items": [
{
"label": "Overview",
"items": [
2020-07-03 17:48:21 +03:00
{ "text": "Library Architecture", "url": "/api" },
{ "text": "Model Architectures", "url": "/api/architectures" },
2020-07-05 17:11:16 +03:00
{ "text": "Data Formats", "url": "/api/data-formats" },
{ "text": "Command Line", "url": "/api/cli" },
{ "text": "Functions", "url": "/api/top-level" }
]
},
{
"label": "Containers",
"items": [
{ "text": "Doc", "url": "/api/doc" },
{ "text": "Token", "url": "/api/token" },
{ "text": "Span", "url": "/api/span" },
{ "text": "Lexeme", "url": "/api/lexeme" },
{ "text": "MorphAnalysis", "url": "/api/morphanalysis" },
2020-07-04 15:23:10 +03:00
{ "text": "Example", "url": "/api/example" },
{ "text": "DocBin", "url": "/api/docbin" }
]
},
{
"label": "Pipeline",
"items": [
{ "text": "Language", "url": "/api/language" },
{ "text": "Tokenizer", "url": "/api/tokenizer" },
2020-07-08 14:34:35 +03:00
{ "text": "Tok2Vec", "url": "/api/tok2vec" },
{ "text": "Lemmatizer", "url": "/api/lemmatizer" },
2020-07-08 14:34:35 +03:00
{ "text": "Morphologizer", "url": "/api/morphologizer" },
{ "text": "Tagger", "url": "/api/tagger" },
{ "text": "DependencyParser", "url": "/api/dependencyparser" },
{ "text": "EntityRecognizer", "url": "/api/entityrecognizer" },
Documentation for Entity Linking (#4065) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * typo fix * add candidate API to kb documentation * update API sidebar with EntityLinker and KnowledgeBase * remove EL from 101 docs * remove entity linker from 101 pipelines / rephrase * custom el model instead of existing model * set version to 2.2 for EL functionality * update documentation for 2 CLI scripts
2019-09-12 12:38:34 +03:00
{ "text": "EntityLinker", "url": "/api/entitylinker" },
{ "text": "TextCategorizer", "url": "/api/textcategorizer" },
{ "text": "Matcher", "url": "/api/matcher" },
{ "text": "PhraseMatcher", "url": "/api/phrasematcher" },
{ "text": "EntityRuler", "url": "/api/entityruler" },
{ "text": "Sentencizer", "url": "/api/sentencizer" },
2020-07-04 15:23:10 +03:00
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
{ "text": "Other Functions", "url": "/api/pipeline-functions" }
]
},
{
"label": "Other",
"items": [
{ "text": "Vocab", "url": "/api/vocab" },
{ "text": "StringStore", "url": "/api/stringstore" },
{ "text": "Vectors", "url": "/api/vectors" },
2019-09-12 15:00:14 +03:00
{ "text": "Lookups", "url": "/api/lookups" },
{ "text": "Morphology", "url": "/api/morphology" },
Documentation for Entity Linking (#4065) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * typo fix * add candidate API to kb documentation * update API sidebar with EntityLinker and KnowledgeBase * remove EL from 101 docs * remove entity linker from 101 pipelines / rephrase * custom el model instead of existing model * set version to 2.2 for EL functionality * update documentation for 2 CLI scripts
2019-09-12 12:38:34 +03:00
{ "text": "KnowledgeBase", "url": "/api/kb" },
2019-09-18 21:23:21 +03:00
{ "text": "Scorer", "url": "/api/scorer" },
2020-07-04 15:23:10 +03:00
{ "text": "Corpus", "url": "/api/corpus" }
]
},
{
"label": "Cython",
"items": [
{ "text": "Architecture", "url": "/api/cython" },
{ "text": "Structs", "url": "/api/cython-structs" },
{ "text": "Classes", "url": "/api/cython-classes" }
]
}
]
}
]