spaCy/examples/pipeline/wiki_entity_linking/train_el.py

299 lines
13 KiB
Python
Raw Normal View History

# coding: utf-8
from __future__ import unicode_literals
import os
import datetime
from os import listdir
import numpy as np
import random
from thinc.neural._classes.convolution import ExtractWindow
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, logistic
from thinc.api import chain, concatenate, flatten_add_lengths, with_getitem, clone, with_flatten
from thinc.neural.util import get_array_module
2019-05-14 09:37:52 +03:00
from thinc.v2v import Model, Softmax, Maxout, Affine, ReLu
from thinc.t2v import Pooling, sum_pool, mean_pool, max_pool
2019-05-14 09:37:52 +03:00
from thinc.t2t import ParametricAttention
from thinc.misc import Residual
from thinc.misc import LayerNorm as LN
2019-05-13 15:26:04 +03:00
from spacy.tokens import Doc
""" TODO: this code needs to be implemented in pipes.pyx"""
class EL_Model:
PRINT_LOSS = True
PRINT_F = True
2019-05-15 03:23:08 +03:00
EPS = 0.0000000005
CUTOFF = 0.5
INPUT_DIM = 300
ENTITY_WIDTH = 64
ARTICLE_WIDTH = 64
HIDDEN_1_WIDTH = 256
HIDDEN_2_WIDTH = 64
name = "entity_linker"
def __init__(self, kb, nlp):
run_el._prepare_pipeline(nlp, kb)
self.nlp = nlp
self.kb = kb
self._build_cnn(hidden_entity_width=self.ENTITY_WIDTH, hidden_article_width=self.ARTICLE_WIDTH)
2019-05-14 09:37:52 +03:00
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
# raise errors instead of runtime warnings in case of int/float overflow
np.seterr(all='raise')
2019-05-13 15:26:04 +03:00
Doc.set_extension("entity_id", default=None)
train_instances, train_pos, train_neg, train_doc = self._get_training_data(training_dir,
entity_descr_output,
False,
2019-05-14 09:37:52 +03:00
trainlimit,
to_print=False)
2019-05-13 15:26:04 +03:00
dev_instances, dev_pos, dev_neg, dev_doc = self._get_training_data(training_dir,
entity_descr_output,
True,
2019-05-14 09:37:52 +03:00
devlimit,
to_print=False)
self._begin_training()
if self.PRINT_F:
2019-05-16 19:36:15 +03:00
_, _, f_avg_train = -3.42, -3.42, -3.42 # self._test_dev(train_instances, train_pos, train_neg, train_doc, avg=True)
_, _, f_nonavg_train = self._test_dev(train_instances, train_pos, train_neg, train_doc, avg=False)
_, _, f_random_train = self._test_dev(train_instances, train_pos, train_neg, train_doc, calc_random=True)
2019-05-16 19:36:15 +03:00
_, _, f_avg_dev = -3.42, -3.42, -3.42 # self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc, avg=True)
_, _, f_nonavg_dev = self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc, avg=False)
_, _, f_random_dev = self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc, calc_random=True)
print("random F train", round(f_random_train, 1))
print("random F dev", round(f_random_dev, 1))
print()
print("avg/nonavg F train", round(f_avg_train, 1), round(f_nonavg_train, 1))
print("avg/nonavg F dev", round(f_avg_dev, 1), round(f_nonavg_dev, 1))
print()
instance_pos_count = 0
instance_neg_count = 0
if to_print:
print("Training on", len(train_instances.values()), "articles")
print("Dev test on", len(dev_instances.values()), "articles")
print()
article_docs = list()
entities = list()
golds = list()
for article_id, inst_cluster_set in train_instances.items():
for inst_cluster in inst_cluster_set:
article_docs.append(train_doc[article_id])
entities.append(train_pos.get(inst_cluster))
golds.append(float(1.0))
instance_pos_count += 1
for neg_entity in train_neg.get(inst_cluster, []):
article_docs.append(train_doc[article_id])
entities.append(neg_entity)
golds.append(float(0.0))
instance_neg_count += 1
for x in range(10):
print("Updating", x)
self.update(article_docs=article_docs, entities=entities, golds=golds)
# eval again
if self.PRINT_F:
2019-05-16 19:36:15 +03:00
_, _, f_avg_train = -3.42, -3.42, -3.42 # self._test_dev(train_instances, train_pos, train_neg, train_doc, avg=True)
_, _, f_nonavg_train = self._test_dev(train_instances, train_pos, train_neg, train_doc, avg=False)
2019-05-16 19:36:15 +03:00
_, _, f_avg_dev = -3.42, -3.42, -3.42 # self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc, avg=True)
_, _, f_nonavg_dev = self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc, avg=False)
print("avg/nonavg F train", round(f_avg_train, 1), round(f_nonavg_train, 1))
print("avg/nonavg F dev", round(f_avg_dev, 1), round(f_nonavg_dev, 1))
print()
if to_print:
print("Trained on", instance_pos_count, "/", instance_neg_count, "instances pos/neg")
def _test_dev(self, dev_instances, dev_pos, dev_neg, dev_doc, avg=False, calc_random=False):
predictions = list()
golds = list()
for article_id, inst_cluster_set in dev_instances.items():
for inst_cluster in inst_cluster_set:
pos_ex = dev_pos.get(inst_cluster)
neg_exs = dev_neg.get(inst_cluster, [])
article = inst_cluster.split(sep="_")[0]
entity_id = inst_cluster.split(sep="_")[1]
article_doc = dev_doc[article]
if calc_random:
prediction = self._predict_random(entity=pos_ex)
else:
prediction = self._predict(article_doc=article_doc, entity=pos_ex, avg=avg)
predictions.append(prediction)
golds.append(float(1.0))
for neg_ex in neg_exs:
if calc_random:
prediction = self._predict_random(entity=neg_ex)
else:
prediction = self._predict(article_doc=article_doc, entity=neg_ex, avg=avg)
predictions.append(prediction)
golds.append(float(0.0))
# TODO: use lowest_mse and combine with prior probability
p, r, f = run_el.evaluate(predictions, golds, to_print=False)
return p, r, f
2019-05-13 15:26:04 +03:00
def _predict(self, article_doc, entity, avg=False, apply_threshold=True):
if avg:
with self.sgd.use_params(self.model.averages):
doc_encoding = self.article_encoder([article_doc])
entity_encoding = self.entity_encoder([entity])
return self.model(np.append(entity_encoding, doc_encoding)) # TODO list
doc_encoding = self.article_encoder([article_doc])[0]
entity_encoding = self.entity_encoder([entity])[0]
concat_encoding = list(entity_encoding) + list(doc_encoding)
np_array = np.asarray([concat_encoding])
prediction = self.model(np_array)
if not apply_threshold:
return float(prediction)
if prediction > self.CUTOFF:
return float(1.0)
return float(0.0)
def _predict_random(self, entity, apply_threshold=True):
r = random.uniform(0, 1)
if not apply_threshold:
return r
if r > self.CUTOFF:
return float(1.0)
return float(0.0)
def _build_cnn(self, hidden_entity_width, hidden_article_width):
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
self.entity_encoder = self._encoder(in_width=self.INPUT_DIM, hidden_width=hidden_entity_width) # entity encoding
self.article_encoder = self._encoder(in_width=self.INPUT_DIM, hidden_width=hidden_article_width) # doc encoding
hidden_input_with = hidden_entity_width + hidden_article_width
hidden_output_with = self.HIDDEN_1_WIDTH
convolution_2 = Residual((ExtractWindow(nW=1) >> LN(Maxout(hidden_output_with, hidden_output_with * 3))))
self.model = Affine(hidden_output_with, hidden_input_with) \
>> LN(Maxout(hidden_output_with, hidden_output_with)) \
>> convolution_2 \
>> Affine(self.HIDDEN_2_WIDTH, hidden_output_with) \
>> Affine(1, self.HIDDEN_2_WIDTH) \
>> logistic
@staticmethod
def _encoder(in_width, hidden_width):
with Model.define_operators({">>": chain}):
encoder = SpacyVectors \
>> flatten_add_lengths \
>> ParametricAttention(in_width)\
>> Pooling(mean_pool) \
>> Residual(zero_init(Maxout(in_width, in_width))) \
>> zero_init(Affine(hidden_width, in_width, drop_factor=0.0))
return encoder
def _begin_training(self):
self.sgd = create_default_optimizer(self.model.ops)
def update(self, article_docs, entities, golds, drop=0.):
doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=drop)
entity_encodings, bp_encoding = self.entity_encoder.begin_update(entities, drop=drop)
concat_encodings = [list(entity_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=drop)
predictions = self.model.ops.flatten(predictions)
golds = self.model.ops.asarray(golds)
# print("predictions", predictions)
# print("golds", golds)
d_scores = (predictions - golds) # / predictions.shape[0]
# print("d_scores (1)", d_scores)
loss = (d_scores ** 2).sum()
if self.PRINT_LOSS:
print("loss train", round(loss, 5))
d_scores = d_scores.reshape((-1, 1))
d_scores = d_scores.astype(np.float32)
# print("d_scores (2)", d_scores)
model_gradient = bp_model(d_scores, sgd=self.sgd)
doc_gradient = [x[0:self.ARTICLE_WIDTH] for x in model_gradient]
entity_gradient = [x[self.ARTICLE_WIDTH:] for x in model_gradient]
bp_doc(doc_gradient)
bp_encoding(entity_gradient)
2019-05-13 15:26:04 +03:00
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
collect_correct=True,
collect_incorrect=True)
instance_by_doc = dict()
local_vectors = list() # TODO: local vectors
doc_by_article = dict()
pos_entities = dict()
neg_entities = dict()
cnt = 0
for f in listdir(training_dir):
if not limit or cnt < limit:
2019-05-13 15:26:04 +03:00
if dev == run_el.is_dev(f):
article_id = f.replace(".txt", "")
if cnt % 500 == 0 and to_print:
print(datetime.datetime.now(), "processed", cnt, "files in the training dataset")
cnt += 1
if article_id not in doc_by_article:
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
text = file.read()
doc = self.nlp(text)
doc_by_article[article_id] = doc
instance_by_doc[article_id] = set()
for mention, entity_pos in correct_entries[article_id].items():
descr = id_to_descr.get(entity_pos)
if descr:
instance_by_doc[article_id].add(article_id + "_" + mention)
doc_descr = self.nlp(descr)
2019-05-13 15:26:04 +03:00
doc_descr._.entity_id = entity_pos
pos_entities[article_id + "_" + mention] = doc_descr
for mention, entity_negs in incorrect_entries[article_id].items():
for entity_neg in entity_negs:
descr = id_to_descr.get(entity_neg)
if descr:
doc_descr = self.nlp(descr)
2019-05-13 15:26:04 +03:00
doc_descr._.entity_id = entity_neg
descr_list = neg_entities.get(article_id + "_" + mention, [])
descr_list.append(doc_descr)
neg_entities[article_id + "_" + mention] = descr_list
if to_print:
print()
print("Processed", cnt, "training articles, dev=" + str(dev))
print()
return instance_by_doc, pos_entities, neg_entities, doc_by_article