* Refactor Docs.is_ flags
* Add derived `Doc.has_annotation` method
* `Doc.has_annotation(attr)` returns `True` for partial annotation
* `Doc.has_annotation(attr, require_complete=True)` returns `True` for
complete annotation
* Add deprecation warnings to `is_tagged`, `is_parsed`, `is_sentenced`
and `is_nered`
* Add `Doc._get_array_attrs()`, which returns a full list of `Doc` attrs
for use with `Doc.to_array`, `Doc.to_bytes` and `Doc.from_docs`. The
list is the `DocBin` attributes list plus `SPACY` and `LENGTH`.
Notes on `Doc.has_annotation`:
* `HEAD` is converted to `DEP` because heads don't have an unset state
* Accept `IS_SENT_START` as a synonym of `SENT_START`
Additional changes:
* Add `NORM`, `ENT_ID` and `SENT_START` to default attributes for
`DocBin`
* In `Doc.from_array()` the presence of `DEP` causes `HEAD` to override
`SENT_START`
* In `Doc.from_array()` using `attrs` other than
`Doc._get_array_attrs()` (i.e., a user's custom list rather than our
default internal list) with both `HEAD` and `SENT_START` shows a warning
that `HEAD` will override `SENT_START`
* `set_children_from_heads` does not require dependency labels to set
sentence boundaries and sets `sent_start` for all non-sentence starts to
`-1`
* Fix call to set_children_form_heads
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
This was the only registry that expected the registered objects to be dictionaries instead of functions that return something. We can still support plain dicts but we should also support functions for consistency
- Accept any case for label names in ents and colors option, even if actual predicted label uses different casing
- Don't text-transform: uppercase visually, if it's important to users that the label is represented as-is in the UI
* add lemma option to displacy 'dep' visualiser
* more compact list comprehension
* add option to doc
* fix test and add lemmas to util.get_doc
* fix capital
* remove lemma from get_doc
* cleanup
* Generalize handling of tokenizer special cases
Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.
Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:
* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes
Existing tests/settings that couldn't be preserved as before:
* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again
When merged with #4258 (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.
* Remove accidentally added test case
* Really remove accidentally added test
* Reload special cases when necessary
Reload special cases when affixes or token_match are modified. Skip
reloading during initialization.
* Update error code number
* Fix offset and whitespace in Matcher special cases
* Fix offset bugs when merging and splitting tokens
* Set final whitespace on final token in inserted special case
* Improve cache flushing in tokenizer
* Separate cache and specials memory (temporarily)
* Flush cache when adding special cases
* Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()`
are necessary due to this bug:
https://github.com/explosion/preshed/issues/21
* Remove reinitialized PreshMaps on cache flush
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Use special Matcher only for cases with affixes
* Reinsert specials cache checks during normal tokenization for special
cases as much as possible
* Additionally include specials cache checks while splitting on infixes
* Since the special Matcher needs consistent affix-only tokenization
for the special cases themselves, introduce the argument
`with_special_cases` in order to do tokenization with or without
specials cache checks
* After normal tokenization, postprocess with special cases Matcher for
special cases containing affixes
* Replace PhraseMatcher with Aho-Corasick
Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.
The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.
Fixes#4308.
* Restore support for pickling
* Fix internal keyword add/remove for numpy arrays
* Add test for #4248, clean up test
* Improve efficiency of special cases handling
* Use PhraseMatcher instead of Matcher
* Improve efficiency of merging/splitting special cases in document
* Process merge/splits in one pass without repeated token shifting
* Merge in place if no splits
* Update error message number
* Remove UD script modifications
Only used for timing/testing, should be a separate PR
* Remove final traces of UD script modifications
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Add missing loop for match ID set in search loop
* Remove cruft in matching loop for partial matches
There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.
* Replace dict trie with MapStruct trie
* Fix how match ID hash is stored/added
* Update fix for match ID vocab
* Switch from map_get_unless_missing to map_get
* Switch from numpy array to Token.get_struct_attr
Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.
Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)
* Restructure imports to export find_matches
* Implement full remove()
Remove unnecessary trie paths and free unused maps.
Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.
* Switch to PhraseMatcher.find_matches
* Switch to local cdef functions for span filtering
* Switch special case reload threshold to variable
Refer to variable instead of hard-coded threshold
* Move more of special case retokenize to cdef nogil
Move as much of the special case retokenization to nogil as possible.
* Rewrap sort as stdsort for OS X
* Rewrap stdsort with specific types
* Switch to qsort
* Fix merge
* Improve cmp functions
* Fix realloc
* Fix realloc again
* Initialize span struct while retokenizing
* Temporarily skip retokenizing
* Revert "Move more of special case retokenize to cdef nogil"
This reverts commit 0b7e52c797.
* Revert "Switch to qsort"
This reverts commit a98d71a942.
* Fix specials check while caching
* Modify URL test with emoticons
The multiple suffix tests result in the emoticon `:>`, which is now
retokenized into one token as a special case after the suffixes are
split off.
* Refactor _apply_special_cases()
* Use cdef ints for span info used in multiple spots
* Modify _filter_special_spans() to prefer earlier
Parallel to #4414, modify _filter_special_spans() so that the earlier
span is preferred for overlapping spans of the same length.
* Replace MatchStruct with Entity
Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.
* Replace Entity with more general SpanC
* Replace MatchStruct with SpanC
* Add error in debug-data if no dev docs are available (see #4575)
* Update azure-pipelines.yml
* Revert "Update azure-pipelines.yml"
This reverts commit ed1060cf59.
* Use latest wasabi
* Reorganise install_requires
* add dframcy to universe.json (#4580)
* Update universe.json [ci skip]
* Fix multiprocessing for as_tuples=True (#4582)
* Fix conllu script (#4579)
* force extensions to avoid clash between example scripts
* fix arg order and default file encoding
* add example config for conllu script
* newline
* move extension definitions to main function
* few more encodings fixes
* Add load_from_docbin example [ci skip]
TODO: upload the file somewhere
* Update README.md
* Add warnings about 3.8 (resolves#4593) [ci skip]
* Fixed typo: Added space between "recognize" and "various" (#4600)
* Fix DocBin.merge() example (#4599)
* Replace function registries with catalogue (#4584)
* Replace functions registries with catalogue
* Update __init__.py
* Fix test
* Revert unrelated flag [ci skip]
* Bugfix/dep matcher issue 4590 (#4601)
* add contributor agreement for prilopes
* add test for issue #4590
* fix on_match params for DependencyMacther (#4590)
* Minor updates to language example sentences (#4608)
* Add punctuation to Spanish example sentences
* Combine multilanguage examples for lang xx
* Add punctuation to nb examples
* Always realloc to a larger size
Avoid potential (unlikely) edge case and cymem error seen in #4604.
* Add error in debug-data if no dev docs are available (see #4575)
* Update debug-data for GoldCorpus / Example
* Ignore None label in misaligned NER data
* Add default to util.get_entry_point
* Tidy up entry points
* Read lookups from entry points
* Remove lookup tables and related tests
* Add lookups install option
* Remove lemmatizer tests
* Remove logic to process language data files
* Update setup.cfg
* Fix typo in rule-based matching docs
* Improve token pattern checking without validation
Add more detailed token pattern checks without full JSON pattern validation and
provide more detailed error messages.
Addresses #4070 (also related: #4063, #4100).
* Check whether top-level attributes in patterns and attr for PhraseMatcher are
in token pattern schema
* Check whether attribute value types are supported in general (as opposed to
per attribute with full validation)
* Report various internal error types (OverflowError, AttributeError, KeyError)
as ValueError with standard error messages
* Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS,
LEMMA, and DEP
* Add error messages with relevant details on how to use validate=True or nlp()
instead of nlp.make_doc()
* Support attr=TEXT for PhraseMatcher
* Add NORM to schema
* Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler
* Remove unnecessary .keys()
* Rephrase error messages
* Add another type check to Matcher
Add another type check to Matcher for more understandable error messages
in some rare cases.
* Support phrase_matcher_attr=TEXT for EntityRuler
* Don't use spacy.errors in examples and bin scripts
* Fix error code
* Auto-format
Also try get Azure pipelines to finally start a build :(
* Update errors.py
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* customizable template for entities display, allowing to pass additional parameters along each entity
* contributor agreement
* simpler naming for the additional parameters given to the span entities renderer
Co-Authored-By: Ines Montani <ines@ines.io>
* change of default parameter, as suggested
Co-Authored-By: Ines Montani <ines@ines.io>
Closes#2091.
## Description
With the new `vocab.writing_system` property introduced in #3390 (exposed via the language defaults), I was able to finally fix this (I think!). Based on the `Doc`, dispaCy now detects whether it's a RTL or LTR language and adjusts the visualization accordingly. Wherever possible, I've also added `direction` and `lang` attributes.
Entity visualization now looks like this:
<img width="318" alt="Screenshot 2019-03-11 at 16 06 51" src="https://user-images.githubusercontent.com/13643239/54136866-d97afd80-441c-11e9-8c27-3d46994cc833.png">
And dependencies like this (ignore the most likely incorrect tags and dependencies):
<img width="621" alt="Screenshot 2019-03-11 at 16 51 59" src="https://user-images.githubusercontent.com/13643239/54137771-8b66f980-441e-11e9-8460-0682b95eef2a.png">
### Types of change
enhancement, bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
<!--- Provide a general summary of your changes in the title. -->
## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs
### Types of change
enhancement, docs
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
Resolves#3208.
Prevent interactions with other libraries (pandas) that also access `get_ipython().config` and its parameters. See #3208 for details. I don't fully understand why this happens, but in spaCy, we can at least make sure we avoid calling into this method.
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
## Description
- [x] fix auto-detection of Jupyter notebooks (even if `jupyter=True` isn't set)
- [x] add `displacy.set_render_wrapper` method to define a custom function called around the HTML markup generated in all calls to `displacy.render` (can be used to allow custom integrations, callbacks and page formatting)
- [x] add option to customise host for web server
- [x] show warning if `displacy.serve` is called from within Jupyter notebooks
- [x] move error message to `spacy.errors.Errors`.
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Support nowrap setting in util.prints
* Tidy up and fix whitespace
* Simplify script and use read_jsonl helper
* Add JSON schemas (see #2928)
* Deprecate Doc.print_tree
Will be replaced with Doc.to_json, which will produce a unified format
* Add Doc.to_json() method (see #2928)
Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.
* Remove outdated test
* Add write_json and write_jsonl helpers
* WIP: Update spacy train
* Tidy up spacy train
* WIP: Use wasabi for formatting
* Add GoldParse helpers for JSON format
* WIP: add debug-data command
* Fix typo
* Add missing import
* Update wasabi pin
* Add missing import
* 💫 Refactor CLI (#2943)
To be merged into #2932.
## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Update wasabi pin
* Delete old test
* Update errors
* Fix typo
* Tidy up and format remaining code
* Fix formatting
* Improve formatting of messages
* Auto-format remaining code
* Add tok2vec stuff to spacy.train
* Fix typo
* Update wasabi pin
* Fix path checks for when train() is called as function
* Reformat and tidy up pretrain script
* Update argument annotations
* Raise error if model language doesn't match lang
* Document new train command