* span finder integrated into spacy from experimental
* black
* isort
* black
* default spankey constant
* black
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* rename
* rename
* max_length and min_length as Optional[int] and strict checking
* black
* mypy fix for integer type infinity
* revert line order
* implement all comparison operators for inf int
* avoid two for loops over all docs by not precomputing
* interleave thresholding with span creation
* black
* revert to not interleaving (relized its faster)
* black
* Update spacy/errors.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* update dosctring
* enforce that the gold and predicted documents have the same text
* new error for ensuring reference and predicted texts are the same
* remove todo
* adjust test
* black
* handle misaligned tokenization
* return correct variable
* failing overfit test
* only use a single spans_key like in spancat
* black
* remove debug lines
* typo
* remove comment
* remove near duplicate reduntant method
* use the 'spans_key' variable name everywhere
* Update spacy/pipeline/span_finder.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* flaky test fix suggestion, hand set bias terms
* only test suggester and test result exhaustively
* make it clear that the span_finder_suggester is more general (not specific to span_finder)
* Update spacy/tests/pipeline/test_span_finder.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Apply suggestions from code review
* remove question comment
* move preset_spans_suggester test to spancat tests
* Add docs and unify default configs for spancat and span finder
* Add `allow_overlap=True` to span finder scorer
* Fix offset bug in set_annotations
* Ignore labels in span finder scorer
* Format
* Add span_finder to quickstart template
* Move settings to self.cfg, store min/max unset as None
* Remove debugging
* Update docstrings and docs
* Update spacy/pipeline/span_finder.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix imports
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* [wip] Update
* [wip] Update
* Add initial port
* [wip] Update
* Fix all imports
* Add spancat_exclusive to pipeline
* [WIP] Update
* [ci skip] Add breakpoint for debugging
* Use spacy.SpanCategorizer.v1 as default archi
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* [ci skip] Small updates
* Use Softmax v2 directly from thinc
* Cache the label map
* Fix mypy errors
However, I ignored line 370 because it opened up a bunch of type errors
that might be trickier to solve and might lead to a more complicated
codebase.
* avoid multiplication with 1.0
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update component versions to v2
* Add scorer to docstring
* Add _n_labels property to SpanCategorizer
Instead of using len(self.labels) in initialize() I am using a private
property self._n_labels. This achieves implementation parity and allows
me to delete the whole initialize() method for spancat_exclusive (since
it's now the same with spancat).
* Inherit from SpanCat instead of TrainablePipe
This commit changes the inheritance structure of Exclusive_Spancat,
now it's inheriting from SpanCategorizer than TrainablePipe. This
allows me to remove duplicate methods that are already present in
the parent function.
* Revert documentation link to spancat
* Fix init call for exclusive spancat
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Import Suggester from spancat
* Include zero_init.v1 for spancat
* Implement _allow_extra_label to use _n_labels
To ensure that spancat / spancat_exclusive cannot be resized after
initialization, I inherited the _allow_extra_label() method from
spacy/pipeline/trainable_pipe.pyx and used self._n_labels instead
of len(self.labels) for checking.
I think that changing it locally is a better solution rather than
forcing each class that inherits TrainablePipe to use the self._n_labels
attribute.
Also note that I turned-off black formatting in this block of code
because it reads better without the overhang.
* Extend existing tests to spancat_exclusive
In this commit, I extended the existing tests for spancat to include
spancat_exclusive. I parametrized the test functions with 'name'
(similar var name with textcat and textcat_multilabel) for each
applicable test.
TODO: Add overfitting tests for spancat_exclusive
* Update documentation for spancat
* Turn on formatting for allow_extra_label
* Remove initializers in default config
* Use DEFAULT_EXCL_SPANCAT_MODEL
I also renamed spancat_exclusive_default_config into
spancat_excl_default_config because black does some not pretty
formatting changes.
* Update documentation
Update grammar and usage
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Clarify docstring for Exclusive_SpanCategorizer
* Remove mypy ignore and typecast labels to list
* Fix documentation API
* Use a single variable for tests
* Update defaults for number of rows
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Put back initializers in spancat config
Whenever I remove model.scorer.init_w and model.scorer.init_b,
I encounter an error in the test:
SystemError: <method '__getitem__' of 'dict' objects> returned a result
with an error set.
My Thinc version is 8.1.5, but I can't seem to check what's causing the
error.
* Update spancat_exclusive docstring
* Remove init_W and init_B parameters
This commit is expected to fail until the new Thinc release.
* Require thinc>=8.1.6 for serializable Softmax defaults
* Handle zero suggestions to make tests pass
I'm not sure if this is the most elegant solution. But what should
happen is that the _make_span_group function MUST return an empty
SpanGroup if there are no suggestions.
The error happens when the 'scores' variable is empty. We cannot
get the 'predicted' and other downstream vars.
* Better approach for handling zero suggestions
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spancategorizer headers
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add default value in negative_weight in docs
* Add default value in allow_overlap in docs
* Update how spancat_exclusive is constructed
In this commit, I added the following:
- Put the default values of negative_weight and allow_overlap
in the default_config dictionary.
- Rename make_spancat -> make_exclusive_spancat
* Run prettier on spancategorizer.mdx
* Change exactly one -> at most one
* Add suggester documentation in Exclusive_SpanCategorizer
* Add suggester to spancat docstrings
* merge multilabel and singlelabel spancat
* rename spancat_exclusive to singlelable
* wire up different make_spangroups for single and multilabel
* black
* black
* add docstrings
* more docstring and fix negative_label
* don't rely on default arguments
* black
* remove spancat exclusive
* replace single_label with add_negative_label and adjust inference
* mypy
* logical bug in configuration check
* add spans.attrs[scores]
* single label make_spangroup test
* bugfix
* black
* tests for make_span_group with negative labels
* refactor make_span_group
* black
* Update spacy/tests/pipeline/test_spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* remove duplicate declaration
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* raise error instead of just print
* make label mapper private
* update docs
* run prettier
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* don't keep recomputing self._label_map for each span
* typo in docs
* Intervals to private and document 'name' param
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* add Tag to new features
* replace tags
* revert
* revert
* revert
* revert
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* prettier
* Fix merge
* Update website/docs/api/spancategorizer.mdx
* remove references to 'single_label'
* remove old paragraph
* Add spancat_singlelabel to config template
* Format
* Extend init config tests
---------
Co-authored-by: kadarakos <kadar.akos@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Store activations in Doc when `store_activations` is enabled
This change adds the new `activations` attribute to `Doc`. This
attribute can be used by trainable pipes to store their activations,
probabilities, and guesses for downstream users.
As an example, this change modifies the `tagger` and `senter` pipes to
add an `store_activations` option. When this option is enabled, the
probabilities and guesses are stored in `set_annotations`.
* Change type of `store_activations` to `Union[bool, List[str]]`
When the value is:
- A bool: all activations are stored when set to `True`.
- A List[str]: the activations named in the list are stored
* Formatting fixes in Tagger
* Support store_activations in spancat and morphologizer
* Make Doc.activations type visible to MyPy
* textcat/textcat_multilabel: add store_activations option
* trainable_lemmatizer/entity_linker: add store_activations option
* parser/ner: do not currently support returning activations
* Extend tagger and senter tests
So that they, like the other tests, also check that we get no
activations if no activations were requested.
* Document `Doc.activations` and `store_activations` in the relevant pipes
* Start errors/warnings at higher numbers to avoid merge conflicts
Between the master and v4 branches.
* Add `store_activations` to docstrings.
* Replace store_activations setter by set_store_activations method
Setters that take a different type than what the getter returns are still
problematic for MyPy. Replace the setter by a method, so that type inference
works everywhere.
* Use dict comprehension suggested by @svlandeg
* Revert "Use dict comprehension suggested by @svlandeg"
This reverts commit 6e7b958f70.
* EntityLinker: add type annotations to _add_activations
* _store_activations: make kwarg-only, remove doc_scores_lens arg
* set_annotations: add type annotations
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* TextCat.predict: return dict
* Make the `TrainablePipe.store_activations` property a bool
This means that we can also bring back `store_activations` setter.
* Remove `TrainablePipe.activations`
We do not need to enumerate the activations anymore since `store_activations` is
`bool`.
* Add type annotations for activations in predict/set_annotations
* Rename `TrainablePipe.store_activations` to `save_activations`
* Error E1400 is not used anymore
This error was used when activations were still `Union[bool, List[str]]`.
* Change wording in API docs after store -> save change
* docs: tag (save_)activations as new in spaCy 4.0
* Fix copied line in morphologizer activations test
* Don't train in any test_save_activations test
* Rename activations
- "probs" -> "probabilities"
- "guesses" -> "label_ids", except in the edit tree lemmatizer, where
"guesses" -> "tree_ids".
* Remove unused W400 warning.
This warning was used when we still allowed the user to specify
which activations to save.
* Formatting fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Replace "kb_ids" by a constant
* spancat: replace a cast by an assertion
* Fix EOF spacing
* Fix comments in test_save_activations tests
* Do not set RNG seed in activation saving tests
* Revert "spancat: replace a cast by an assertion"
This reverts commit 0bd5730d16.
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Make changes to typing
* Correction
* Format with black
* Corrections based on review
* Bumped Thinc dependency version
* Bumped blis requirement
* Correction for older Python versions
* Update spacy/ml/models/textcat.py
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Corrections based on review feedback
* Readd deleted docstring line
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Add save_candidates attribute
* Change spancat api
* Add unit test
* reimplement method to produce a list of doc
* Add method to docs
* Add new version tag
* Add intended use to docstring
* prettier formatting
* Auto-format code with black
* add black requirement to dev dependencies and pin to 22.x
* ignore black dependency for comparison with setup.cfg
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
Co-authored-by: svlandeg <svlandeg@github.com>
Instead of the running the actual suggester, which may require
annotation from annotating components that is not necessarily present in
the reference docs, use the built-in 1-gram suggester.
* Fix Scorer.score_cats for missing labels
* Add test case for Scorer.score_cats missing labels
* semantic nitpick
* black formatting
* adjust test to give different results depending on multi_label setting
* fix loss function according to whether or not missing values are supported
* add note to docs
* small fixes
* make mypy happy
* Update spacy/pipeline/textcat.py
Co-authored-by: Florian Cäsar <florian.caesar@pm.me>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <svlandeg@github.com>
* add custom protocols in spacy.ty
* add a test for the new types in spacy.ty
* import Example when type checking
* some type fixes
* put Protocol in compat
* revert update check back to hasattr
* runtime_checkable in compat as well
* 🚨 Ignore all existing Mypy errors
* 🏗 Add Mypy check to CI
* Add types-mock and types-requests as dev requirements
* Add additional type ignore directives
* Add types packages to dev-only list in reqs test
* Add types-dataclasses for python 3.6
* Add ignore to pretrain
* 🏷 Improve type annotation on `run_command` helper
The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.
* 🔧 Allow variable type redefinition in limited contexts
These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:
```python
def process(items: List[str]) -> None:
# 'items' has type List[str]
items = [item.split() for item in items]
# 'items' now has type List[List[str]]
...
```
This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`
These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.
* 🏷 Add type annotation to converters mapping
* 🚨 Fix Mypy error in convert CLI argument verification
* 🏷 Improve type annotation on `resolve_dot_names` helper
* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`
* 🏷 Add type annotations for more `Vocab` attributes
* 🏷 Add loose type annotation for gold data compilation
* 🏷 Improve `_format_labels` type annotation
* 🏷 Fix `get_lang_class` type annotation
* 🏷 Loosen return type of `Language.evaluate`
* 🏷 Don't accept `Scorer` in `handle_scores_per_type`
* 🏷 Add `string_to_list` overloads
* 🏷 Fix non-Optional command-line options
* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`
* ➕ Install `typing_extensions` in Python 3.8+
The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.
Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.
These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.
* 🏷 Improve type annotation for `Language.pipe`
These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.
Fixes#8772
* ➖ Don't install `typing-extensions` in Python 3.8+
After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉
These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.
* resolve mypy errors for Strict pydantic types
* refactor code to avoid missing return statement
* fix types of convert CLI command
* avoid list-set confustion in debug_data
* fix typo and formatting
* small fixes to avoid type ignores
* fix types in profile CLI command and make it more efficient
* type fixes in projects CLI
* put one ignore back
* type fixes for render
* fix render types - the sequel
* fix BaseDefault in language definitions
* fix type of noun_chunks iterator - yields tuple instead of span
* fix types in language-specific modules
* 🏷 Expand accepted inputs of `get_string_id`
`get_string_id` accepts either a string (in which case it returns its
ID) or an ID (in which case it immediately returns the ID). These
changes extend the type annotation of `get_string_id` to indicate that
it can accept either strings or IDs.
* 🏷 Handle override types in `combine_score_weights`
The `combine_score_weights` function allows users to pass an `overrides`
mapping to override data extracted from the `weights` argument. Since it
allows `Optional` dictionary values, the return value may also include
`Optional` dictionary values.
These changes update the type annotations for `combine_score_weights` to
reflect this fact.
* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`
* 🏷 Fix redefinition of `wandb_logger`
These changes fix the redefinition of `wandb_logger` by giving a
separate name to each `WandbLogger` version. For
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3`
as `wandb_logger` for now.
* more fixes for typing in language
* type fixes in model definitions
* 🏷 Annotate `_RandomWords.probs` as `NDArray`
* 🏷 Annotate `tok2vec` layers to help Mypy
* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6
Also remove an import that I forgot to move to the top of the module 😅
* more fixes for matchers and other pipeline components
* quick fix for entity linker
* fixing types for spancat, textcat, etc
* bugfix for tok2vec
* type annotations for scorer
* add runtime_checkable for Protocol
* type and import fixes in tests
* mypy fixes for training utilities
* few fixes in util
* fix import
* 🐵 Remove unused `# type: ignore` directives
* 🏷 Annotate `Language._components`
* 🏷 Annotate `spacy.pipeline.Pipe`
* add doc as property to span.pyi
* small fixes and cleanup
* explicit type annotations instead of via comment
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
* overfitting test on non-overlapping entities
* add failing overfitting test for overlapping entities
* failing test for list comprehension
* remove test that was put in separate PR
* bugfix
* cleanup
* Add scorer option to components
Add an optional `scorer` parameter to all pipeline components. If a
scoring function is provided, it overrides the default scoring method
for that component.
* Add registered scorers for all components
* Add `scorers` registry
* Move all scoring methods outside of components as independent
functions and register
* Use the registered scoring methods as defaults in configs and inits
Additional:
* The scoring methods no longer have access to the full component, so
use settings from `cfg` as default scorer options to handle settings
such as `labels`, `threshold`, and `positive_label`
* The `attribute_ruler` scoring method no longer has access to the
patterns, so all scoring methods are called
* Bug fix: `spancat` scoring method is updated to set `allow_overlap` to
score overlapping spans correctly
* Update Russian lemmatizer to use direct score method
* Check type of cfg in Pipe.score
* Fix check
* Update spacy/pipeline/sentencizer.pyx
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Remove validate_examples from scoring functions
* Use Pipe.labels instead of Pipe.cfg["labels"]
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add scores to output in spancat
This exposes the scores as an attribute on the SpanGroup. Includes a
basic test.
* Add basic doc note
* Vectorize score calcs
* Add "annotation format" section
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Clean up doc section
* Ran prettier on docs
* Get arrays off the gpu before iterating over them
* Remove int() calls
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Draft spancat model
* Add spancat model
* Add test for extract_spans
* Add extract_spans layer
* Upd extract_spans
* Add spancat model
* Add test for spancat model
* Upd spancat model
* Update spancat component
* Upd spancat
* Update spancat model
* Add quick spancat test
* Import SpanCategorizer
* Fix SpanCategorizer component
* Import SpanGroup
* Fix span extraction
* Fix import
* Fix import
* Upd model
* Update spancat models
* Add scoring, update defaults
* Update and add docs
* Fix type
* Update spacy/ml/extract_spans.py
* Auto-format and fix import
* Fix comment
* Fix type
* Fix type
* Update website/docs/api/spancategorizer.md
* Fix comment
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Better defense
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix labels list
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/ml/extract_spans.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Set annotations during update
* Set annotations in spancat
* fix imports in test
* Update spacy/pipeline/spancat.py
* replace MaxoutLogistic with LinearLogistic
* fix config
* various small fixes
* remove set_annotations parameter in update
* use our beloved tupley format with recent support for doc.spans
* bugfix to allow renaming the default span_key (scores weren't showing up)
* use different key in docs example
* change defaults to better-working parameters from project (WIP)
* register spacy.extract_spans.v1 for legacy purposes
* Upd dev version so can build wheel
* layers instead of architectures for smaller building blocks
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Include additional scores from overrides in combined score weights
* Parameterize spans key in scoring
Parameterize the `SpanCategorizer` `spans_key` for scoring purposes so
that it's possible to evaluate multiple `spancat` components in the same
pipeline.
* Use the (intentionally very short) default spans key `sc` in the
`SpanCategorizer`
* Adjust the default score weights to include the default key
* Adjust the scorer to use `spans_{spans_key}` as the prefix for the
returned score
* Revert addition of `attr_name` argument to `score_spans` and adjust
the key in the `getter` instead.
Note that for `spancat` components with a custom `span_key`, the score
weights currently need to be modified manually in
`[training.score_weights]` for them to be available during training. To
suppress the default score weights `spans_sc_p/r/f` during training, set
them to `null` in `[training.score_weights]`.
* Update website/docs/api/scorer.md
* Fix scorer for spans key containing underscore
* Increment version
* Add Spans to Evaluate CLI (#8439)
* Add Spans to Evaluate CLI
* Change to spans_key
* Add spans per_type output
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix spancat GPU issues (#8455)
* Fix GPU issues
* Require thinc >=8.0.6
* Switch to glorot_uniform_init
* Fix and test ngram suggester
* Include final ngram in doc for all sizes
* Fix ngrams for docs of the same length as ngram size
* Handle batches of docs that result in no ngrams
* Add tests
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Nirant <NirantK@users.noreply.github.com>