Commit Graph

38 Commits

Author SHA1 Message Date
Daniël de Kok
a183db3cef
Merge the parser refactor into v4 (#10940)
* Try to fix doc.copy

* Set dev version

* Make vocab always own lexemes

* Change version

* Add SpanGroups.copy method

* Fix set_annotations during Parser.update

* Fix dict proxy copy

* Upd version

* Fix copying SpanGroups

* Fix set_annotations in parser.update

* Fix parser set_annotations during update

* Revert "Fix parser set_annotations during update"

This reverts commit eb138c89ed.

* Revert "Fix set_annotations in parser.update"

This reverts commit c6df0eafd0.

* Fix set_annotations during parser update

* Inc version

* Handle final states in get_oracle_sequence

* Inc version

* Try to fix parser training

* Inc version

* Fix

* Inc version

* Fix parser oracle

* Inc version

* Inc version

* Fix transition has_gold

* Inc version

* Try to use real histories, not oracle

* Inc version

* Upd parser

* Inc version

* WIP on rewrite parser

* WIP refactor parser

* New progress on parser model refactor

* Prepare to remove parser_model.pyx

* Convert parser from cdef class

* Delete spacy.ml.parser_model

* Delete _precomputable_affine module

* Wire up tb_framework to new parser model

* Wire up parser model

* Uncython ner.pyx and dep_parser.pyx

* Uncython

* Work on parser model

* Support unseen_classes in parser model

* Support unseen classes in parser

* Cleaner handling of unseen classes

* Work through tests

* Keep working through errors

* Keep working through errors

* Work on parser. 15 tests failing

* Xfail beam stuff. 9 failures

* More xfail. 7 failures

* Xfail. 6 failures

* cleanup

* formatting

* fixes

* pass nO through

* Fix empty doc in update

* Hackishly fix resizing. 3 failures

* Fix redundant test. 2 failures

* Add reference version

* black formatting

* Get tests passing with reference implementation

* Fix missing prints

* Add missing file

* Improve indexing on reference implementation

* Get non-reference forward func working

* Start rigging beam back up

* removing redundant tests, cf #8106

* black formatting

* temporarily xfailing issue 4314

* make flake8 happy again

* mypy fixes

* ensure labels are added upon predict

* cleanup remnants from merge conflicts

* Improve unseen label masking

Two changes to speed up masking by ~10%:

- Use a bool array rather than an array of float32.

- Let the mask indicate whether a label was seen, rather than
  unseen. The mask is most frequently used to index scores for
  seen labels. However, since the mask marked unseen labels,
  this required computing an intermittent flipped mask.

* Write moves costs directly into numpy array (#10163)

This avoids elementwise indexing and the allocation of an additional
array.

Gives a ~15% speed improvement when using batch_by_sequence with size
32.

* Temporarily disable ner and rehearse tests

Until rehearse is implemented again in the refactored parser.

* Fix loss serialization issue (#10600)

* Fix loss serialization issue

Serialization of a model fails with:

TypeError: array(738.3855, dtype=float32) is not JSON serializable

Fix this using float conversion.

* Disable CI steps that require spacy.TransitionBasedParser.v2

After finishing the refactor, TransitionBasedParser.v2 should be
provided for backwards compat.

* Add back support for beam parsing to the refactored parser (#10633)

* Add back support for beam parsing

Beam parsing was already implemented as part of the `BeamBatch` class.
This change makes its counterpart `GreedyBatch`. Both classes are hooked
up in `TransitionModel`, selecting `GreedyBatch` when the beam size is
one, or `BeamBatch` otherwise.

* Use kwarg for beam width

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Avoid implicit default for beam_width and beam_density

* Parser.{beam,greedy}_parse: ensure labels are added

* Remove 'deprecated' comments

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Parser `StateC` optimizations (#10746)

* `StateC`: Optimizations

Avoid GIL acquisition in `__init__`
Increase default buffer capacities on init
Reduce C++ exception overhead

* Fix typo

* Replace `set::count` with `set::find`

* Add exception attribute to c'tor

* Remove unused import

* Use a power-of-two value for initial capacity
Use default-insert to init `_heads` and `_unshiftable`

* Merge `cdef` variable declarations and assignments

* Vectorize `example.get_aligned_parses` (#10789)

* `example`: Vectorize `get_aligned_parse`
Rename `numpy` import

* Convert aligned array to lists before returning

* Revert import renaming

* Elide slice arguments when selecting the entire range

* Tagger/morphologizer alignment performance optimizations (#10798)

* `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__`

* `AlignmentArray`: Use native list as staging buffer for offset calculation

* `example`: Vectorize `get_aligned`

* Hoist inner functions out of `get_aligned`

* Replace inline `if..else` clause in assignment statement

* `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays

* `example`: Replace array unique value check with `groupby`

* `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized`
Simplify `_get_aligned_non_vectorized`

* `util`: Update `all_equal` docstring

* Explicitly use `int32_t*`

* Restore C CPU inference in the refactored parser (#10747)

* Bring back the C parsing model

The C parsing model is used for CPU inference and is still faster for
CPU inference than the forward pass of the Thinc model.

* Use C sgemm provided by the Ops implementation

* Make tb_framework module Cython, merge in C forward implementation

* TransitionModel: raise in backprop returned from forward_cpu

* Re-enable greedy parse test

* Return transition scores when forward_cpu is used

* Apply suggestions from code review

Import `Model` from `thinc.api`

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Use relative imports in tb_framework

* Don't assume a default for beam_width

* We don't have a direct dependency on BLIS anymore

* Rename forwards to _forward_{fallback,greedy_cpu}

* Require thinc >=8.1.0,<8.2.0

* tb_framework: clean up imports

* Fix return type of _get_seen_mask

* Move up _forward_greedy_cpu

* Style fixes.

* Lower thinc lowerbound to 8.1.0.dev0

* Formatting fix

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Reimplement parser rehearsal function (#10878)

* Reimplement parser rehearsal function

Before the parser refactor, rehearsal was driven by a loop in the
`rehearse` method itself. For each parsing step, the loops would:

1. Get the predictions of the teacher.
2. Get the predictions and backprop function of the student.
3. Compute the loss and backprop into the student.
4. Move the teacher and student forward with the predictions of
   the student.

In the refactored parser, we cannot perform search stepwise rehearsal
anymore, since the model now predicts all parsing steps at once.
Therefore, rehearsal is performed in the following steps:

1. Get the predictions of all parsing steps from the student, along
   with its backprop function.
2. Get the predictions from the teacher, but use the predictions of
   the student to advance the parser while doing so.
3. Compute the loss and backprop into the student.

To support the second step a new method, `advance_with_actions` is
added to `GreedyBatch`, which performs the provided parsing steps.

* tb_framework: wrap upper_W and upper_b in Linear

Thinc's Optimizer cannot handle resizing of existing parameters. Until
it does, we work around this by wrapping the weights/biases of the upper
layer of the parser model in Linear. When the upper layer is resized, we
copy over the existing parameters into a new Linear instance. This does
not trigger an error in Optimizer, because it sees the resized layer as
a new set of parameters.

* Add test for TransitionSystem.apply_actions

* Better FIXME marker

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Fixes from Madeesh

* Apply suggestions from Sofie

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Remove useless assignment

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Rename some identifiers in the parser refactor (#10935)

* Rename _parseC to _parse_batch

* tb_framework: prefix many auxiliary functions with underscore

To clearly state the intent that they are private.

* Rename `lower` to `hidden`, `upper` to `output`

* Parser slow test fixup

We don't have TransitionBasedParser.{v1,v2} until we bring it back as a
legacy option.

* Remove last vestiges of PrecomputableAffine

This does not exist anymore as a separate layer.

* ner: re-enable sentence boundary checks

* Re-enable test that works now.

* test_ner: make loss test more strict again

* Remove commented line

* Re-enable some more beam parser tests

* Remove unused _forward_reference function

* Update for CBlas changes in Thinc 8.1.0.dev2

Bump thinc dependency to 8.1.0.dev3.

* Remove references to spacy.TransitionBasedParser.{v1,v2}

Since they will not be offered starting with spaCy v4.

* `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas`

* dont use get_array_module (#11056) (#11293)

Co-authored-by: kadarakos <kadar.akos@gmail.com>

* Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317)

* `search`: Move from `thinc.extra.search`
Fix NPE in `Beam.__dealloc__`

* `pytest`: Add support for executing Cython tests
Move `search` tests from thinc and patch them to run with `pytest`

* `mypy` fix

* Update comment

* `conftest`: Expose `register_cython_tests`

* Remove unused import

* Move `argmax` impls to new `_parser_utils` Cython module (#11410)

* Parser does not have to be a cdef class anymore

This also fixes validation of the initialization schema.

* Add back spacy.TransitionBasedParser.v2

* Fix a rename that was missed in #10878.

So that rehearsal tests pass.

* Remove module from setup.py that got added during the merge

* Bring back support for `update_with_oracle_cut_size` (#12086)

* Bring back support for `update_with_oracle_cut_size`

This option was available in the pre-refactor parser, but was never
implemented in the refactored parser. This option cuts transition
sequences that are longer than `update_with_oracle_cut` size into
separate sequences that have at most `update_with_oracle_cut`
transitions. The oracle (gold standard) transition sequence is used to
determine the cuts and the initial states for the additional sequences.

Applying this cut makes the batches more homogeneous in the transition
sequence lengths, making forward passes (and as a consequence training)
much faster.

Training time 1000 steps on de_core_news_lg:

- Before this change: 149s
- After this change: 68s
- Pre-refactor parser: 81s

* Fix a rename that was missed in #10878.

So that rehearsal tests pass.

* Apply suggestions from @shadeMe

* Use chained conditional

* Test with update_with_oracle_cut_size={0, 1, 5, 100}

And fix a git that occurs with a cut size of 1.

* Fix up some merge fall out

* Update parser distillation for the refactor

In the old parser, we'd iterate over the transitions in the distill
function and compute the loss/gradients on the go. In the refactored
parser, we first let the student model parse the inputs. Then we'll let
the teacher compute the transition probabilities of the states in the
student's transition sequence. We can then compute the gradients of the
student given the teacher.

* Add back spacy.TransitionBasedParser.v1 references

- Accordion in the architecture docs.
- Test in test_parse, but disabled until we have a spacy-legacy release.

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: kadarakos <kadar.akos@gmail.com>
2023-01-18 11:27:45 +01:00
Daniël de Kok
5e297aa20e
Add TrainablePipe.{distill,get_teacher_student_loss} (#12016)
* Add `TrainablePipe.{distill,get_teacher_student_loss}`

This change adds two methods:

- `TrainablePipe::distill` which performs a training step of a
   student pipe on a teacher pipe, giving a batch of `Doc`s.
- `TrainablePipe::get_teacher_student_loss` computes the loss
  of a student relative to the teacher.

The `distill` or `get_teacher_student_loss` methods are also implemented
in the tagger, edit tree lemmatizer, and parser pipes, to enable
distillation in those pipes and as an example for other pipes.

* Fix stray `Beam` import

* Fix incorrect import

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* TrainablePipe.distill: use `Iterable[Example]`

* Add Pipe.is_distillable method

* Add `validate_distillation_examples`

This first calls `validate_examples` and then checks that the
student/teacher tokens are the same.

* Update distill documentation

* Add distill documentation for all pipes that support distillation

* Fix incorrect identifier

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add comment to explain `is_distillable`

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2023-01-16 10:25:53 +01:00
Adriane Boyd
0591e67265
Cast to uint64 for all array-based doc representations (#11933)
* Convert all individual values explicitly to uint64 for array-based doc representations

* Temporarily test with latest numpy v1.24.0rc

* Remove unnecessary conversion from attr_t

* Reduce number of individual casts

* Convert specifically from int32 to uint64

* Revert "Temporarily test with latest numpy v1.24.0rc"

This reverts commit eb0e3c5006.

* Also use int32 in tests
2022-12-12 08:45:35 +01:00
stefawolf
23749cfc91
adding spans to doc_annotation in Example.to_dict (#11261)
* adding spans to doc_annotation in Example.to_dict

* to_dict compatible with from_dict: tuples instead of spans

* use strings for label and kb_id

* Simplify test

* Update data formats docs

Co-authored-by: Stefanie Wolf <stefanie.wolf@vitecsoftware.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-08-05 12:26:38 +02:00
Madeesh Kannan
1d5cad0b42
Example.get_aligned_parse: Handle unit and zero length vectors correctly (#11026)
* `Example.get_aligned_parse`: Do not squeeze gold token idx vector
Correctly handle zero-size vectors passed to `np.vectorize`

* Add tests

* Use `Doc` ctor to initialize attributes

* Remove unintended change

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Remove unused import

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-06-28 19:42:58 +02:00
Madeesh Kannan
8f1ba4de58
Backport parser/alignment optimizations from feature/refactor-parser (#10952) 2022-06-24 13:39:52 +02:00
Sofie Van Landeghem
eaeca5eb6a
account for NER labels with a hyphen in the name (#10960)
* account for NER labels with a hyphen in the name

* cleanup

* fix docstring

* add return type to helper method

* shorter method and few more occurrences

* user helper method across repo

* fix circular import

* partial revert to avoid circular import
2022-06-17 20:02:37 +01:00
Sofie Van Landeghem
f7507c2327
fix typo + CI slow testing (#10835)
* fix typo

* one more typo
2022-06-02 00:10:16 +02:00
Daniël de Kok
c90dd6f265
Alignment: use a simplified ragged type for performance (#10319)
* Alignment: use a simplified ragged type for performance

This introduces the AlignmentArray type, which is a simplified version
of Ragged that performs better on the simple(r) indexing performed for
alignment.

* AlignmentArray: raise an error when using unsupported index

* AlignmentArray: move error messages to Errors

* AlignmentArray: remove simlified ... with simplifications

* AlignmentArray: fix typo that broke a[n:n] indexing
2022-04-01 09:02:06 +02:00
Paul O'Leary McCann
61ba5450ff
Fix get_matching_ents (#10451)
* Fix get_matching_ents

Not sure what happened here - the code prior to this commit simply does
not work. It's already covered by entity linker tests, which were
succeeding in the NEL PR, but couldn't possibly succeed on master.

* Fix test

Test was indented inside another test and so doesn't seem to have been
running properly.
2022-03-07 16:56:57 +01:00
Paul O'Leary McCann
91acc3ea75
Fix entity linker batching (#9669)
* Partial fix of entity linker batching

* Add import

* Better name

* Add `use_gold_ents` option, docs

* Change to v2, create stub v1, update docs etc.

* Fix error type

Honestly no idea what the right type to use here is.
ConfigValidationError seems wrong. Maybe a NotImplementedError?

* Make mypy happy

* Add hacky fix for init issue

* Add legacy pipeline entity linker

* Fix references to class name

* Add __init__.py for legacy

* Attempted fix for loss issue

* Remove placeholder V1

* formatting

* slightly more interesting train data

* Handle batches with no usable examples

This adds a test for batches that have docs but not entities, and a
check in the component that detects such cases and skips the update step
as thought the batch were empty.

* Remove todo about data verification

Check for empty data was moved further up so this should be OK now - the
case in question shouldn't be possible.

* Fix gradient calculation

The model doesn't know which entities are not in the kb, so it generates
embeddings for the context of all of them.

However, the loss does know which entities aren't in the kb, and it
ignores them, as there's no sensible gradient.

This has the issue that the gradient will not be calculated for some of
the input embeddings, which causes a dimension mismatch in backprop.
That should have caused a clear error, but with numpyops it was causing
nans to happen, which is another problem that should be addressed
separately.

This commit changes the loss to give a zero gradient for entities not in
the kb.

* add failing test for v1 EL legacy architecture

* Add nasty but simple working check for legacy arch

* Clarify why init hack works the way it does

* Clarify use_gold_ents use case

* Fix use gold ents related handling

* Add tests for no gold ents and fix other tests

* Use aligned ents function (not working)

This doesn't actually work because the "aligned" ents are gold-only. But
if I have a different function that returns the intersection, *then*
this will work as desired.

* Use proper matching ent check

This changes the process when gold ents are not used so that the
intersection of ents in the pred and gold is used.

* Move get_matching_ents to Example

* Use model attribute to check for legacy arch

* Rename flag

* bump spacy-legacy to lower 3.0.9

Co-authored-by: svlandeg <svlandeg@github.com>
2022-03-04 09:17:36 +01:00
Adriane Boyd
fef896ce49
Allow Example to align whitespace annotation (#10189)
Remove exception for whitespace tokens in `Example.get_aligned` so that
annotation on whitespace tokens is aligned in the same way as for
non-whitespace tokens.
2022-02-03 17:01:53 +01:00
Adriane Boyd
30d4eb506a
Fix setting empty entities in Example.from_dict (#8426) 2021-06-18 10:41:50 +02:00
Matthew Honnibal
6f5e308d17
Support negative examples in partial NER annotations (#8106)
* Support a cfg field in transition system

* Make NER 'has gold' check use right alignment for span

* Pass 'negative_samples_key' property into NER transition system

* Add field for negative samples to NER transition system

* Check neg_key in NER has_gold

* Support negative examples in NER oracle

* Test for negative examples in NER

* Fix name of config variable in NER

* Remove vestiges of old-style partial annotation

* Remove obsolete tests

* Add comment noting lack of support for negative samples in parser

* Additions to "neg examples" PR (#8201)

* add custom error and test for deprecated format

* add test for unlearning an entity

* add break also for Begin's cost

* add negative_samples_key property on Parser

* rename

* extend docs & fix some older docs issues

* add subclass constructors, clean up tests, fix docs

* add flaky test with ValueError if gold parse was not found

* remove ValueError if n_gold == 0

* fix docstring

* Hack in environment variables to try out training

* Remove hack

* Remove NER hack, and support 'negative O' samples

* Fix O oracle

* Fix transition parser

* Remove 'not O' from oracle

* Fix NER oracle

* check for spans in both gold.ents and gold.spans and raise if so, to prevent memory access violation

* use set instead of list in consistency check

Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2021-06-17 17:33:00 +10:00
Adriane Boyd
f68fc29130
Update sent_starts in Example.from_dict (#7847)
* Update sent_starts in Example.from_dict

Update `sent_starts` for `Example.from_dict` so that `Optional[bool]`
values have the same meaning as for `Token.is_sent_start`.

Use `Optional[bool]` as the type for sent start values in the docs.

* Use helper function for conversion to ternary ints
2021-04-22 11:32:45 +02:00
Sofie Van Landeghem
204c2f116b
Extend score_spans for overlapping & non-labeled spans (#7209)
* extend span scorer with consider_label and allow_overlap

* unit test for spans y2x overlap

* add score_spans unit test

* docs for new fields in scorer.score_spans

* rename to include_label

* spell out if-else for clarity

* rename to 'labeled'

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2021-04-08 12:19:17 +02:00
Sofie Van Landeghem
212f0e779e
Support doc.spans in Example.from_dict (#7197)
* add support for spans in Example.from_dict

* add unit tests

* update error to E879
2021-03-03 01:12:54 +11:00
Ines Montani
cc18f3f23c
Improve Example error handling for NER data (#6835)
* Improve Example error handling for NER data

* Fix conditional
2021-01-28 13:11:20 +11:00
Matthew Honnibal
7b3f0c6f1b
Questionable fix for parser training bug with misaligned sentences (#6694)
* Questionable fix for parser training bug with misaligned sentences

* Fix

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2021-01-15 14:18:24 +01:00
svlandeg
ed53bb979d cleanup 2021-01-13 14:20:05 +01:00
svlandeg
86a4e316b8 fix sent_starts 2021-01-13 13:47:25 +01:00
svlandeg
a581d82f33 introduce token.has_head and refer to MISSING_DEP_ (WIP) 2021-01-12 17:17:06 +01:00
svlandeg
dd12c6c8fd allow missing information in deps and heads annotations 2021-01-07 19:10:32 +01:00
Matthew Honnibal
8656a08777
Add beam_parser and beam_ner components for v3 (#6369)
* Get basic beam tests working

* Get basic beam tests working

* Compile _beam_utils

* Remove prints

* Test beam density

* Beam parser seems to train

* Draft beam NER

* Upd beam

* Add hypothesis as dev dependency

* Implement missing is-gold-parse method

* Implement early update

* Fix state hashing

* Fix test

* Fix test

* Default to non-beam in parser constructor

* Improve oracle for beam

* Start refactoring beam

* Update test

* Refactor beam

* Update nn

* Refactor beam and weight by cost

* Update ner beam settings

* Update test

* Add __init__.pxd

* Upd test

* Fix test

* Upd test

* Fix test

* Remove ring buffer history from StateC

* WIP change arc-eager transitions

* Add state tests

* Support ternary sent start values

* Fix arc eager

* Fix NER

* Pass oracle cut size for beam

* Fix ner test

* Fix beam

* Improve StateC.clone

* Improve StateClass.borrow

* Work directly with StateC, not StateClass

* Remove print statements

* Fix state copy

* Improve state class

* Refactor parser oracles

* Fix arc eager oracle

* Fix arc eager oracle

* Use a vector to implement the stack

* Refactor state data structure

* Fix alignment of sent start

* Add get_aligned_sent_starts method

* Add test for ae oracle when bad sentence starts

* Fix sentence segment handling

* Avoid Reduce that inserts illegal sentence

* Update preset SBD test

* Fix test

* Remove prints

* Fix sent starts in Example

* Improve python API of StateClass

* Tweak comments and debug output of arc eager

* Upd test

* Fix state test

* Fix state test
2020-12-13 09:08:32 +08:00
Adriane Boyd
1c4df8fd09
Replace pytokenizations with internal alignment (#6293)
* Replace pytokenizations with internal alignment

Replace pytokenizations with internal alignment algorithm that is
restricted to only allow differences in whitespace and capitalization.

* Rename `spacy.training.align` to `spacy.training.alignment` to contain
the `Alignment` dataclass
* Implement `get_alignments` in `spacy.training.align`

* Refactor trailing whitespace handling

* Remove unnecessary exception for empty docs

Allow a non-empty whitespace-only doc to be aligned with an empty doc

* Remove empty docs exceptions completely
2020-11-03 16:24:38 +01:00
Sofie Van Landeghem
d093d6343b
TrainablePipe (#6213)
* rename Pipe to TrainablePipe

* split functionality between Pipe and TrainablePipe

* remove unnecessary methods from certain components

* cleanup

* hasattr(component, "pipe") should be sufficient again

* remove serialization and vocab/cfg from Pipe

* unify _ensure_examples and validate_examples

* small fixes

* hasattr checks for self.cfg and self.vocab

* make is_resizable and is_trainable properties

* serialize strings.json instead of vocab

* fix KB IO + tests

* fix typos

* more typos

* _added_strings as a set

* few more tests specifically for _added_strings field

* bump to 3.0.0a36
2020-10-08 21:33:49 +02:00
Ines Montani
3c36a57e84
Update data augmenters (#6196)
* Draft lower-case augmenter

* Make warning a debug log

* Update lowercase augmenter, docs and tests

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-10-04 17:46:29 +02:00
Adriane Boyd
86c3ec9c2b
Refactor Token morph setting (#6175)
* Refactor Token morph setting

* Remove `Token.morph_`
* Add `Token.set_morph()`
  * `0` resets `token.c.morph` to unset
  * Any other values are passed to `Morphology.add`

* Add token.morph setter to set from MorphAnalysis
2020-10-01 22:21:46 +02:00
Adriane Boyd
df98d3ef9f
Update import from collections.abc (#6174) 2020-10-01 16:21:49 +02:00
Matthew Honnibal
93d7ff309f Remove print 2020-09-24 21:05:27 +02:00
Matthew Honnibal
2abb4ba9db
Make a pre-check to speed up alignment cache (#6139)
* Dirty trick to fast-track alignment cache

* Improve alignment cache check

* Fix header

* Fix align cache

* Fix align logic
2020-09-24 18:13:39 +02:00
Ines Montani
58dde293ce
Merge pull request #6089 from adrianeboyd/feature/doc-ents-v3-2 2020-09-24 14:44:42 +02:00
Adriane Boyd
535842e483
Merge branch 'develop' into feature/doc-ents-v3-2 2020-09-22 13:45:50 +02:00
svlandeg
b556a10808 rename converts in_to_out 2020-09-22 11:50:19 +02:00
Ines Montani
67fbcb3da5 Tidy up tests and docs 2020-09-21 20:43:54 +02:00
Adriane Boyd
177df15d89 Implement Doc.set_ents 2020-09-21 15:54:05 +02:00
Adriane Boyd
8b650f3a78 Modify setting missing and blocked entity tokens
In order to make it easier to construct `Doc` objects as training data,
modify how missing and blocked entity tokens are set to prioritize
setting `O` and missing entity tokens for training purposes over setting
blocked entity tokens.

* `Doc.ents` setter sets tokens outside entity spans to `O` regardless
of the current state of each token

* For `Doc.ents`, setting a span with a missing label sets the `ent_iob`
to missing instead of blocked

* `Doc.block_ents(spans)` marks spans as hard `O` for use with the
`EntityRecognizer`
2020-09-17 21:27:42 +02:00
Sofie Van Landeghem
8e7557656f
Renaming gold & annotation_setter (#6042)
* version bump to 3.0.0a16

* rename "gold" folder to "training"

* rename 'annotation_setter' to 'set_extra_annotations'

* formatting
2020-09-09 10:31:03 +02:00