Commit Graph

373 Commits

Author SHA1 Message Date
svlandeg
84d5b7ad0a Merge remote-tracking branch 'upstream/master' into bugfix/noun-chunks
# Conflicts:
#	spacy/lang/el/syntax_iterators.py
#	spacy/lang/en/syntax_iterators.py
#	spacy/lang/fa/syntax_iterators.py
#	spacy/lang/fr/syntax_iterators.py
#	spacy/lang/id/syntax_iterators.py
#	spacy/lang/nb/syntax_iterators.py
#	spacy/lang/sv/syntax_iterators.py
2020-05-21 19:19:50 +02:00
Ines Montani
d8f3190c0a Tidy up and auto-format 2020-05-21 14:14:01 +02:00
svlandeg
b509a3e7fc fix: use actual range in 'seen' instead of subtree 2020-05-20 23:06:39 +02:00
adrianeboyd
a5cd203284
Reduce stored lexemes data, move feats to lookups (#5238)
* Reduce stored lexemes data, move feats to lookups

* Move non-derivable lexemes features (`norm / cluster / prob`) to
`spacy-lookups-data` as lookups
  * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups
  * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in
    lookups only
* Remove serialization of lexemes data as `vocab/lexemes.bin`
  * Remove `SerializedLexemeC`
  * Remove `Lexeme.to_bytes/from_bytes`
* Modify normalization exception loading:
  * Always create `Vocab.lookups` table `lexeme_norm` for
    normalization exceptions
  * Load base exceptions from `lang.norm_exceptions`, but load
    language-specific exceptions from lookups
  * Set `lex_attr_getter[NORM]` including new lookups table in
    `BaseDefaults.create_vocab()` and when deserializing `Vocab`
* Remove all cached lexemes when deserializing vocab to override
  existing normalizations with the new normalizations (as a replacement
  for the previous step that replaced all lexemes data with the
  deserialized data)

* Skip English normalization test

Skip English normalization test because the data is now in
`spacy-lookups-data`.

* Remove norm exceptions

Moved to spacy-lookups-data.

* Move norm exceptions test to spacy-lookups-data

* Load extra lookups from spacy-lookups-data lazily

Load extra lookups (currently for cluster and prob) lazily from the
entry point `lg_extra` as `Vocab.lookups_extra`.

* Skip creating lexeme cache on load

To improve model loading times, do not create the full lexeme cache when
loading. The lexemes will be created on demand when processing.

* Identify numeric values in Lexeme.set_attrs()

With the removal of a special case for `PROB`, also identify `float` to
avoid trying to convert it with the `StringStore`.

* Skip lexeme cache init in from_bytes

* Unskip and update lookups tests for python3.6+

* Update vocab pickle to include lookups_extra

* Update vocab serialization tests

Check strings rather than lexemes since lexemes aren't initialized
automatically, account for addition of "_SP".

* Re-skip lookups test because of python3.5

* Skip PROB/float values in Lexeme.set_attrs

* Convert is_oov from lexeme flag to lex in vectors

Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether
the lexeme has a vector.

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-05-19 15:59:14 +02:00
adrianeboyd
908dea3939
Skip duplicate lexeme rank setting (#5401)
Skip duplicate lexeme rank setting within
`_fix_pretrained_vectors_name()`.
2020-05-14 18:26:12 +02:00
Adriane Boyd
bc39f97e11 Simplify warnings 2020-04-28 13:37:37 +02:00
adrianeboyd
f7471abd82
Add pkuseg and serialization support for Chinese (#5308)
* Add pkuseg and serialization support for Chinese

Add support for pkuseg alongside jieba

* Specify model through `Language` meta:

  * split on characters (if no word segmentation packages are installed)

```
Chinese(meta={"tokenizer": {"config": {"use_jieba": False, "use_pkuseg": False}}})
```

  * jieba (remains the default tokenizer if installed)

```
Chinese()
Chinese(meta={"tokenizer": {"config": {"use_jieba": True}}}) # explicit
```

  * pkuseg

```
Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "default", "use_jieba": False, "use_pkuseg": True}}})
```

* The new tokenizer setting `require_pkuseg` is used to override
`use_jieba` default, which is intended for models that provide a pkuseg
model:

```
nlp_pkuseg = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "default", "require_pkuseg": True}}})
nlp = Chinese() # has `use_jieba` as `True` by default
nlp.from_bytes(nlp_pkuseg.to_bytes()) # `require_pkuseg` overrides `use_jieba` when calling the tokenizer
```

Add support for serialization of tokenizer settings and pkuseg model, if
loaded

* Add sorting for `Language.to_bytes()` serialization of `Language.meta`
so that the (emptied, but still present) tokenizer metadata is in a
consistent position in the serialized data

Extend tests to cover all three tokenizer configurations and
serialization

* Fix from_disk and tests without jieba or pkuseg

* Load cfg first and only show error if `use_pkuseg`
* Fix blank/default initialization in serialization tests

* Explicitly initialize jieba's cache on init

* Add serialization for pkuseg pre/postprocessors

* Reformat pkuseg install message
2020-04-18 17:01:53 +02:00
Ines Montani
828acffc12 Tidy up and auto-format 2020-03-25 12:28:12 +01:00
adrianeboyd
993758c58f
Remove unnecessary iterator in Language.pipe (#5101)
Remove iterator over `raw_texts` with `iterator.tee()` in
`Language.pipe` that is never consumed and consumes memory
unnecessarily.
2020-03-08 13:22:25 +01:00
Sofie Van Landeghem
d307e9ca58
take care of global vectors in multiprocessing (#5081)
* restore load_nlp.VECTORS in the child process

* add unit test

* fix test

* remove unnecessary import

* add utf8 encoding

* import unicode_literals
2020-03-03 13:58:22 +01:00
Ines Montani
4440a072d2
Merge pull request #5006 from svlandeg/bugfix/multiproc-underscore
load Underscore state when multiprocessing
2020-02-25 14:46:02 +01:00
Sofie Van Landeghem
72c964bcf4
define pretrained_dims which is used by build_text_classifier (#5004) 2020-02-16 17:21:17 +01:00
svlandeg
65f5b48b5d add comment 2020-02-12 12:06:27 +01:00
svlandeg
ecbb9c4b9f load Underscore state when multiprocessing 2020-02-12 11:50:42 +01:00
Sofie Van Landeghem
a1b22e90cd serialize ENT_ID (#4852)
* expand serialization test for custom token attribute

* add failing test for issue 4849

* define ENT_ID as attr and use in doc serialization

* fix few typos
2020-01-06 14:57:34 +01:00
Ines Montani
3bd15055ce
Fix bug in Language.evaluate for components without .pipe (#4662) 2019-11-16 20:20:37 +01:00
Ines Montani
09cec3e41b
Replace function registries with catalogue (#4584)
* Replace functions registries with catalogue

* Update __init__.py

* Fix test

* Revert unrelated flag [ci skip]
2019-11-07 11:45:22 +01:00
Matthew Honnibal
4e43c0ba93 Fix multiprocessing for as_tuples=True (#4582) 2019-11-04 20:29:03 +01:00
Ines Montani
afe4a428f7
Fix pipeline analysis on remove pipe (#4557)
Validate *after* component is removed, not before
2019-10-30 19:04:17 +01:00
Ines Montani
c5e41247e8 Tidy up and auto-format 2019-10-28 12:43:55 +01:00
Matthew Honnibal
f8d740bfb1
Fix --gold-preproc train cli command (#4392)
* Fix get labels for textcat

* Fix char_embed for gpu

* Revert "Fix char_embed for gpu"

This reverts commit 055b9a9e85.

* Fix passing of cats in gold.pyx

* Revert "Match pop with append for training format (#4516)"

This reverts commit 8e7414dace.

* Fix popping gold parses

* Fix handling of cats in gold tuples

* Fix name

* Fix ner_multitask_objective script

* Add test for 4402
2019-10-27 21:58:50 +01:00
Sofie Van Landeghem
8e7414dace Match pop with append for training format (#4516)
* trying to fix script - not succesful yet

* match pop() with extend() to avoid changing the data

* few more pop-extend fixes

* reinsert deleted print statement

* fix print statement

* add last tested version

* append instead of extend

* add in few comments

* quick fix for 4402 + unit test

* fixing number of docs (not counting cats)

* more fixes

* fix len

* print tmp file instead of using data from examples dir

* print tmp file instead of using data from examples dir (2)
2019-10-27 16:01:32 +01:00
Ines Montani
a9c6104047 Component decorator and component analysis (#4517)
* Add work in progress

* Update analysis helpers and component decorator

* Fix porting of docstrings for Python 2

* Fix docstring stuff on Python 2

* Support meta factories when loading model

* Put auto pipeline analysis behind flag for now

* Analyse pipes on remove_pipe and replace_pipe

* Move analysis to root for now

Try to find a better place for it, but it needs to go for now to avoid circular imports

* Simplify decorator

Don't return a wrapped class and instead just write to the object

* Update existing components and factories

* Add condition in factory for classes vs. functions

* Add missing from_nlp classmethods

* Add "retokenizes" to printed overview

* Update assigns/requires declarations of builtins

* Only return data if no_print is enabled

* Use multiline table for overview

* Don't support Span

* Rewrite errors/warnings and move them to spacy.errors
2019-10-27 13:35:49 +01:00
Ines Montani
d2da117114 Also support passing list to Language.disable_pipes (#4521)
* Also support passing list to Language.disable_pipes

* Adjust internals
2019-10-25 16:19:08 +02:00
Ines Montani
2c96a5e5b0
Remove lemma attrs on BaseDefaults (#4468) 2019-10-19 23:18:09 +02:00
Ines Montani
692d7f4291 Fix formatting [ci skip] 2019-10-18 11:33:38 +02:00
Ines Montani
fb11852750 Remove unused imports 2019-10-18 11:06:41 +02:00
Sofie Van Landeghem
2d249a9502 KB extensions and better parsing of WikiData (#4375)
* fix overflow error on windows

* more documentation & logging fixes

* md fix

* 3 different limit parameters to play with execution time

* bug fixes directory locations

* small fixes

* exclude dev test articles from prior probabilities stats

* small fixes

* filtering wikidata entities, removing numeric and meta items

* adding aliases from wikidata also to the KB

* fix adding WD aliases

* adding also new aliases to previously added entities

* fixing comma's

* small doc fixes

* adding subclassof filtering

* append alias functionality in KB

* prevent appending the same entity-alias pair

* fix for appending WD aliases

* remove date filter

* remove unnecessary import

* small corrections and reformatting

* remove WD aliases for now (too slow)

* removing numeric entities from training and evaluation

* small fixes

* shortcut during prediction if there is only one candidate

* add counts and fscore logging, remove FP NER from evaluation

* fix entity_linker.predict to take docs instead of single sentences

* remove enumeration sentences from the WP dataset

* entity_linker.update to process full doc instead of single sentence

* spelling corrections and dump locations in readme

* NLP IO fix

* reading KB is unnecessary at the end of the pipeline

* small logging fix

* remove empty files
2019-10-14 12:28:53 +02:00
Ines Montani
f8f68bb062 Auto-format [ci skip] 2019-10-10 17:08:39 +02:00
tamuhey
650cbfe82d multiprocessing pipe (#1303) (#4371)
* refactor: separate formatting docs and golds in Language.update

* fix return typo

* add pipe test

* unpickleable object cannot be assigned to p.map

* passed test pipe

* passed test!

* pipe terminate

* try pipe

* passed test

* fix ch

* add comments

* fix len(texts)

* add comment

* add comment

* fix: multiprocessing of pipe is not supported in 2

* test: use assert_docs_equal

* fix: is_python3 -> is_python2

* fix: change _pipe arg to use functools.partial

* test: add vector modification test

* test: add sample ner_pipe and user_data pipe

* add warnings test

* test: fix user warnings

* test: fix warnings capture

* fix: remove islice import

* test: remove warnings test

* test: add stream test

* test: rename

* fix: multiproc stream

* fix: stream pipe

* add comment

* mp.Pipe seems to be able to use with relative small data

* test: skip stream test in python2

* sort imports

* test: add reason to skiptest

* fix: use pipe for docs communucation

* add comments

* add comment
2019-10-08 12:20:55 +02:00
Ines Montani
b6670bf0c2 Use consistent spelling 2019-10-02 10:37:39 +02:00
Ines Montani
cf65a80f36 Refactor lemmatizer and data table integration (#4353)
* Move test

* Allow default in Lookups.get_table

* Start with blank tables in Lookups.from_bytes

* Refactor lemmatizer to hold instance of Lookups

* Get lookups table within the lemmatization methods to make sure it references the correct table (even if the table was replaced or modified, e.g. when loading a model from disk)
* Deprecate other arguments on Lemmatizer.__init__ and expect Lookups for consistency
* Remove old and unsupported Lemmatizer.load classmethod
* Refactor language-specific lemmatizers to inherit as much as possible from base class and override only what they need

* Update tests and docs

* Fix more tests

* Fix lemmatizer

* Upgrade pytest to try and fix weird CI errors

* Try pytest 4.6.5
2019-10-01 21:36:03 +02:00
Ines Montani
e0cf4796a5 Move lookup tables out of the core library (#4346)
* Add default to util.get_entry_point

* Tidy up entry points

* Read lookups from entry points

* Remove lookup tables and related tests

* Add lookups install option

* Remove lemmatizer tests

* Remove logic to process language data files

* Update setup.cfg
2019-10-01 00:01:27 +02:00
tamuhey
b408b5b29e Refactor language update (#4316)
* refactor: separate formatting docs and golds in Language.update

* fix return typo
2019-09-27 16:20:21 +02:00
Ines Montani
00a8cbc306 Tidy up and auto-format 2019-09-18 20:27:03 +02:00
adrianeboyd
b5d999e510 Add textcat to train CLI (#4226)
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Paul O'Leary McCann
7d8df69158 Bloom-filter backed Lookup Tables (#4268)
* Improve load_language_data helper

* WIP: Add Lookups implementation

* Start moving lemma data over to JSON

* WIP: move data over for more languages

* Convert more languages

* Fix lemmatizer fixtures in tests

* Finish conversion

* Auto-format JSON files

* Fix test for now

* Make sure tables are stored on instance

* Update docstrings

* Update docstrings and errors

* Update test

* Add Lookups.__len__

* Add serialization methods

* Add Lookups.remove_table

* Use msgpack for serialization to disk

* Fix file exists check

* Try using OrderedDict for everything

* Update .flake8 [ci skip]

* Try fixing serialization

* Update test_lookups.py

* Update test_serialize_vocab_strings.py

* Lookups / Tables now work

This implements the stubs in the Lookups/Table classes. Currently this
is in Cython but with no type declarations, so that could be improved.

* Add lookups to setup.py

* Actually add lookups pyx

The previous commit added the old py file...

* Lookups work-in-progress

* Move from pyx back to py

* Add string based lookups, fix serialization

* Update tests, language/lemmatizer to work with string lookups

There are some outstanding issues here:

- a pickling-related test fails due to the bloom filter
- some custom lemmatizers (fr/nl at least) have issues

More generally, there's a question of how to deal with the case where
you have a string but want to use the lookup table. Currently the table
allows access by string or id, but that's getting pretty awkward.

* Change lemmatizer lookup method to pass (orth, string)

* Fix token lookup

* Fix French lookup

* Fix lt lemmatizer test

* Fix Dutch lemmatizer

* Fix lemmatizer lookup test

This was using a normal dict instead of a Table, so checks for the
string instead of an integer key failed.

* Make uk/nl/ru lemmatizer lookup methods consistent

The mentioned tokenizers all have their own implementation of the
`lookup` method, which accesses a `Lookups` table. The way that was
called in `token.pyx` was changed so this should be updated to have the
same arguments as `lookup` in `lemmatizer.py` (specificially (orth/id,
string)).

Prior to this change tests weren't failing, but there would probably be
issues with normal use of a model. More tests should proably be added.

Additionally, the language-specific `lookup` implementations seem like
they might not be needed, since they handle things like lower-casing
that aren't actually language specific.

* Make recently added Greek method compatible

* Remove redundant class/method

Leftovers from a merge not cleaned up adequately.
2019-09-12 17:26:11 +02:00
Ines Montani
625ce2db8e Update Language docs [ci skip] 2019-09-12 13:03:38 +02:00
Ines Montani
655b434553 Merge branch 'master' into develop 2019-09-12 11:39:18 +02:00
Ines Montani
4d4b3b0783 Add "labels" to Language.meta 2019-09-12 11:34:25 +02:00
Ines Montani
ac0e27a825
💫 Add Language.pipe_labels (#4276)
* Add Language.pipe_labels

* Update spacy/language.py

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
2019-09-12 10:56:28 +02:00
Matthew Honnibal
1a65c5b7af Update develop from master 2019-09-08 18:21:41 +02:00
Matthew Honnibal
fde4f8ac8e Create lookups if not passed in 2019-09-08 18:08:09 +02:00
Ines Montani
cd90752193 Tidy up and auto-format [ci skip] 2019-08-31 13:39:06 +02:00
Matthew Honnibal
6b2ea883ed
Merge pull request #4205 from adrianeboyd/feature/gold-train-orth-variants
Add train_docs() option to add orth variants
2019-08-28 16:54:06 +02:00
Adriane Boyd
aae05ff16b Add train_docs() option to add orth variants
Filtering by orth and tag, create variants of training docs with
alternate orth variants, e.g., unicode quotes, dashes, and ellipses.

The variants can be single tokens (dashes) or paired tokens (quotes)
with left and right versions.

Currently restricted to only add variants to training documents without
raw text provided, where only gold.words needs to be modified.
2019-08-28 09:18:36 +02:00
Matthew Honnibal
c308cf3e3e
Merge branch 'master' into feature/lemmatizer 2019-08-25 13:52:27 +02:00
Ines Montani
5ca7dd0f94
💫 WIP: Basic lookup class scaffolding and JSON for all lemmati… (#4167)
* Improve load_language_data helper

* WIP: Add Lookups implementation

* Start moving lemma data over to JSON

* WIP: move data over for more languages

* Convert more languages

* Fix lemmatizer fixtures in tests

* Finish conversion

* Auto-format JSON files

* Fix test for now

* Make sure tables are stored on instance
2019-08-22 14:21:32 +02:00
Matthew Honnibal
bcd08f20af Merge changes from master 2019-08-21 14:18:52 +02:00
Ines Montani
f580302673 Tidy up and auto-format 2019-08-20 17:36:34 +02:00