Commit Graph

6634 Commits

Author SHA1 Message Date
Matthew Honnibal
71b93f33bb Set dev version 2020-01-30 15:41:45 +01:00
Matthew Honnibal
ba6d78132d Fix dev version 2020-01-30 10:35:09 +01:00
Ines Montani
ccef9f2f44 Update version 2020-01-29 17:52:22 +01:00
adrianeboyd
5ee9d8c9b8
Add MORPH attr, add support in retokenizer (#4947)
* Add MORPH attr / symbol for token attrs

* Update retokenizer for MORPH
2020-01-29 17:45:46 +01:00
adrianeboyd
a365359b36
Add convert CLI option to merge CoNLL-U subtokens (#4722)
* Add convert CLI option to merge CoNLL-U subtokens

Add `-T` option to convert CLI that merges CoNLL-U subtokens into one
token in the converted data. Each CoNLL-U sentence is read into a `Doc`
and the `Retokenizer` is used to merge subtokens with features as
follows:

* `orth` is the merged token orth (should correspond to raw text and `#
text`)

* `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET`

* `pos` is the POS of the syntactic root of the span (as determined by
the Retokenizer)

* `morph` is all morphological features merged

* `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o`

* with `-m` all morphological features are combined with the tag using
the separator `__`, e.g.
`ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art`

* `dep` is the dependency relation for the syntactic root of the span
(as determined by the Retokenizer)

Concatenated tags will be mapped to the UD POS of the syntactic root
(e.g., `ADP`) and the morphological features will be the combined
features.

In many cases, the original UD subtokens can be reconstructed from the
available features given a language-specific lookup table, e.g.,
Portuguese `do / ADP_DET /
Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o /
DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules
for forms containing open class words like Spanish `hablarlo / VERB_PRON
/
Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`.

* Clean up imports
2020-01-29 17:44:25 +01:00
Sofie Van Landeghem
569cc98982
Update spaCy for thinc 8.0.0 (#4920)
* Add load_from_config function

* Add train_from_config script

* Merge configs and expose via spacy.config

* Fix script

* Suggest create_evaluation_callback

* Hard-code for NER

* Fix errors

* Register command

* Add TODO

* Update train-from-config todos

* Fix imports

* Allow delayed setting of parser model nr_class

* Get train-from-config working

* Tidy up and fix scores and printing

* Hide traceback if cancelled

* Fix weighted score formatting

* Fix score formatting

* Make output_path optional

* Add Tok2Vec component

* Tidy up and add tok2vec_tensors

* Add option to copy docs in nlp.update

* Copy docs in nlp.update

* Adjust nlp.update() for set_annotations

* Don't shuffle pipes in nlp.update, decruft

* Support set_annotations arg in component update

* Support set_annotations in parser update

* Add get_gradients method

* Add get_gradients to parser

* Update errors.py

* Fix problems caused by merge

* Add _link_components method in nlp

* Add concept of 'listeners' and ControlledModel

* Support optional attributes arg in ControlledModel

* Try having tok2vec component in pipeline

* Fix tok2vec component

* Fix config

* Fix tok2vec

* Update for Example

* Update for Example

* Update config

* Add eg2doc util

* Update and add schemas/types

* Update schemas

* Fix nlp.update

* Fix tagger

* Remove hacks from train-from-config

* Remove hard-coded config str

* Calculate loss in tok2vec component

* Tidy up and use function signatures instead of models

* Support union types for registry models

* Minor cleaning in Language.update

* Make ControlledModel specifically Tok2VecListener

* Fix train_from_config

* Fix tok2vec

* Tidy up

* Add function for bilstm tok2vec

* Fix type

* Fix syntax

* Fix pytorch optimizer

* Add example configs

* Update for thinc describe changes

* Update for Thinc changes

* Update for dropout/sgd changes

* Update for dropout/sgd changes

* Unhack gradient update

* Work on refactoring _ml

* Remove _ml.py module

* WIP upgrade cli scripts for thinc

* Move some _ml stuff to util

* Import link_vectors from util

* Update train_from_config

* Import from util

* Import from util

* Temporarily add ml.component_models module

* Move ml methods

* Move typedefs

* Update load vectors

* Update gitignore

* Move imports

* Add PrecomputableAffine

* Fix imports

* Fix imports

* Fix imports

* Fix missing imports

* Update CLI scripts

* Update spacy.language

* Add stubs for building the models

* Update model definition

* Update create_default_optimizer

* Fix import

* Fix comment

* Update imports in tests

* Update imports in spacy.cli

* Fix import

* fix obsolete thinc imports

* update srsly pin

* from thinc to ml_datasets for example data such as imdb

* update ml_datasets pin

* using STATE.vectors

* small fix

* fix Sentencizer.pipe

* black formatting

* rename Affine to Linear as in thinc

* set validate explicitely to True

* rename with_square_sequences to with_list2padded

* rename with_flatten to with_list2array

* chaining layernorm

* small fixes

* revert Optimizer import

* build_nel_encoder with new thinc style

* fixes using model's get and set methods

* Tok2Vec in component models, various fixes

* fix up legacy tok2vec code

* add model initialize calls

* add in build_tagger_model

* small fixes

* setting model dims

* fixes for ParserModel

* various small fixes

* initialize thinc Models

* fixes

* consistent naming of window_size

* fixes, removing set_dropout

* work around Iterable issue

* remove legacy tok2vec

* util fix

* fix forward function of tok2vec listener

* more fixes

* trying to fix PrecomputableAffine (not succesful yet)

* alloc instead of allocate

* add morphologizer

* rename residual

* rename fixes

* Fix predict function

* Update parser and parser model

* fixing few more tests

* Fix precomputable affine

* Update component model

* Update parser model

* Move backprop padding to own function, for test

* Update test

* Fix p. affine

* Update NEL

* build_bow_text_classifier and extract_ngrams

* Fix parser init

* Fix test add label

* add build_simple_cnn_text_classifier

* Fix parser init

* Set gpu off by default in example

* Fix tok2vec listener

* Fix parser model

* Small fixes

* small fix for PyTorchLSTM parameters

* revert my_compounding hack (iterable fixed now)

* fix biLSTM

* Fix uniqued

* PyTorchRNNWrapper fix

* small fixes

* use helper function to calculate cosine loss

* small fixes for build_simple_cnn_text_classifier

* putting dropout default at 0.0 to ensure the layer gets built

* using thinc util's set_dropout_rate

* moving layer normalization inside of maxout definition to optimize dropout

* temp debugging in NEL

* fixed NEL model by using init defaults !

* fixing after set_dropout_rate refactor

* proper fix

* fix test_update_doc after refactoring optimizers in thinc

* Add CharacterEmbed layer

* Construct tagger Model

* Add missing import

* Remove unused stuff

* Work on textcat

* fix test (again :)) after optimizer refactor

* fixes to allow reading Tagger from_disk without overwriting dimensions

* don't build the tok2vec prematuraly

* fix CharachterEmbed init

* CharacterEmbed fixes

* Fix CharacterEmbed architecture

* fix imports

* renames from latest thinc update

* one more rename

* add initialize calls where appropriate

* fix parser initialization

* Update Thinc version

* Fix errors, auto-format and tidy up imports

* Fix validation

* fix if bias is cupy array

* revert for now

* ensure it's a numpy array before running bp in ParserStepModel

* no reason to call require_gpu twice

* use CupyOps.to_numpy instead of cupy directly

* fix initialize of ParserModel

* remove unnecessary import

* fixes for CosineDistance

* fix device renaming

* use refactored loss functions (Thinc PR 251)

* overfitting test for tagger

* experimental settings for the tagger: avoid zero-init and subword normalization

* clean up tagger overfitting test

* use previous default value for nP

* remove toy config

* bringing layernorm back (had a bug - fixed in thinc)

* revert setting nP explicitly

* remove setting default in constructor

* restore values as they used to be

* add overfitting test for NER

* add overfitting test for dep parser

* add overfitting test for textcat

* fixing init for linear (previously affine)

* larger eps window for textcat

* ensure doc is not None

* Require newer thinc

* Make float check vaguer

* Slop the textcat overfit test more

* Fix textcat test

* Fix exclusive classes for textcat

* fix after renaming of alloc methods

* fixing renames and mandatory arguments (staticvectors WIP)

* upgrade to thinc==8.0.0.dev3

* refer to vocab.vectors directly instead of its name

* rename alpha to learn_rate

* adding hashembed and staticvectors dropout

* upgrade to thinc 8.0.0.dev4

* add name back to avoid warning W020

* thinc dev4

* update srsly

* using thinc 8.0.0a0 !

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 17:06:46 +01:00
adrianeboyd
06b251dd1e Add support for pos/morphs/lemmas in training data (#4941)
Add support for pos/morphs/lemmas throughout `GoldParse`, `Example`, and
`docs_to_json()`.
2020-01-28 11:36:29 +01:00
adrianeboyd
adc9745718 Modify morphology to support arbitrary features (#4932)
* Restructure tag maps for MorphAnalysis changes

Prepare tag maps for upcoming MorphAnalysis changes that allow
arbritrary features.

* Use default tag map rather than duplicating for ca / uk / vi

* Import tag map into defaults for ga

* Modify tag maps so all morphological fields and features are strings
  * Move features from `"Other"` to the top level
  * Rewrite tuples as strings separated by `","`

* Rewrite morph symbols for fr lemmatizer as strings

* Export MorphAnalysis under spacy.tokens

* Modify morphology to support arbitrary features

Modify `Morphology` and `MorphAnalysis` so that arbitrary features are
supported.

* Modify `MorphAnalysisC` so that it can support arbitrary features and
multiple values per field. `MorphAnalysisC` is redesigned to contain:
  * key: hash of UD FEATS string of morphological features
  * array of `MorphFeatureC` structs that each contain a hash of `Field`
and `Field=Value` for a given morphological feature, which makes it
possible to:
    * find features by field
    * represent multiple values for a given field

* `get_field()` is renamed to `get_by_field()` and is no longer `nogil`.
Instead a new helper function `get_n_by_field()` is `nogil` and returns
`n` features by field.

* `MorphAnalysis.get()` returns all possible values for a field as a
list of individual features such as `["Tense=Pres", "Tense=Past"]`.

* `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string.

* `Morphology.feats_to_dict()` converts a UD FEATS string to a dict
where:
  * Each field has one entry in the dict
  * Multiple values remain separated by a separator in the value string

* `Token.morph_` returns the UD FEATS string and you can set
`Token.morph_` with a UD FEATS string or with a tag map dict.

* Modify get_by_field to use np.ndarray

Modify `get_by_field()` to use np.ndarray. Remove `max_results` from
`get_n_by_field()` and always iterate over all the fields.

* Rewrite without MorphFeatureC

* Add shortcut for existing feats strings as keys

Add shortcut for existing feats strings as keys in `Morphology.add()`.

* Check for '_' as empty analysis when adding morphs

* Extend helper converters in Morphology

Add and extend helper converters that convert and normalize between:

* UD FEATS strings (`"Case=dat,gen|Number=sing"`)
* per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`)
* list of individual features (`["Case=dat", "Case=gen",
"Number=sing"]`)

All converters sort fields and values where applicable.
2020-01-23 22:01:54 +01:00
Sofie Van Landeghem
0a0de85409 Fix gold training (#4938)
* label in span not writable anymore

* Revert "label in span not writable anymore"

This reverts commit ab442338c8.

* ensure doc is not None
2020-01-23 22:00:24 +01:00
adrianeboyd
199d89943e Add as_example to Sentencizer pipe() (#4933) 2020-01-22 15:40:31 +01:00
adrianeboyd
d2f3a44b42 Improve train CLI sentrec scoring (#4892)
* reorder to metrics to prioritize F over P/R
* add sentrec to model metrics
2020-01-08 16:52:14 +01:00
adrianeboyd
e55fa1899a Report length of dev dataset correctly (#4891) 2020-01-08 16:51:51 +01:00
adrianeboyd
e1b493ae85 Add sentrec shortcut to Language (#4890) 2020-01-08 16:51:24 +01:00
Sofie Van Landeghem
581eeed98b Warning goldparse (#4851)
* label in span not writable anymore

* Revert "label in span not writable anymore"

This reverts commit ab442338c8.

* provide more friendly error msg for parsing file
2020-01-01 13:16:48 +01:00
Ines Montani
83e0a6f3e3
Modernize plac commands for Python 3 (#4836) 2020-01-01 13:15:46 +01:00
Ines Montani
401946d480 Un-xfail passing tests 2019-12-25 18:02:20 +01:00
Ines Montani
a892821c51 More formatting changes 2019-12-25 17:59:52 +01:00
Ines Montani
33a2682d60
Add better schemas and validation using Pydantic (#4831)
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Add better schemas and validation using Pydantic

* Revert lookups.md

* Remove unused import

* Update spacy/schemas.py

Co-Authored-By: Sebastián Ramírez <tiangolo@gmail.com>

* Various small fixes

* Fix docstring

Co-authored-by: Sebastián Ramírez <tiangolo@gmail.com>
2019-12-25 12:39:49 +01:00
Ines Montani
db55577c45
Drop Python 2.7 and 3.5 (#4828)
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Revert lookups.md

* Revert top-level.md

* Small adjustments and docs [ci skip]
2019-12-22 01:53:56 +01:00
Ines Montani
21b6d6e0a8 Fix typo 2019-12-21 21:17:31 +01:00
Ines Montani
de33b6d566 Merge branch 'master' into develop 2019-12-21 21:15:46 +01:00
Ines Montani
7c69d30de5 Tidy up and expect warning 2019-12-21 21:14:52 +01:00
Sofie Van Landeghem
732142bf28 facilitate larger training files (#4827)
* add warning for large file and change start var to long

* type for file_length
2019-12-21 21:12:19 +01:00
Ines Montani
d17e7dca9e Fix problems caused by merge conflict 2019-12-21 19:57:41 +01:00
Ines Montani
947dba7141 Merge branch 'master' into develop 2019-12-21 19:04:43 +01:00
Ines Montani
cb4145adc7 Tidy up and auto-format 2019-12-21 19:04:17 +01:00
Ines Montani
158b98a3ef Merge branch 'master' into develop 2019-12-21 18:55:03 +01:00
Olamilekan Wahab
a741de7cf6 Adding support for Yoruba Language (#4614)
* Adding Support for Yoruba

* test text

* Updated test string.

* Fixing encoding declaration.

* Adding encoding to stop_words.py

* Added contributor agreement and removed iranlowo.

* Added removed test files and removed iranlowo to keep project bare.

* Returned CONTRIBUTING.md to default state.

* Added delted conftest entries

* Tidy up and auto-format

* Revert CONTRIBUTING.md

Co-authored-by: Ines Montani <ines@ines.io>
2019-12-21 14:11:50 +01:00
Ines Montani
0750d59e5a Allow setting ner_missing_tag on docs_to_json 2019-12-21 13:47:21 +01:00
Sofie Van Landeghem
8ebbb85117 Documentation for PhraseMatcher constructor (#4826)
* add max_length as argument for init PhraseMatcher

* improve error message too
2019-12-20 23:00:04 +01:00
Sofie Van Landeghem
12158c1e3a Restore tqdm imports (#4804)
* set 4.38.0 to minimal version with color bug fix

* set imports back to proper place

* add upper range for tqdm
2019-12-16 13:12:19 +01:00
Sofie Van Landeghem
557dcf5659 NEL requires sentences to be set (#4801) 2019-12-13 15:55:18 +01:00
tamuhey
1707e77c5e add char_span to Span (#4793) 2019-12-13 15:54:58 +01:00
adrianeboyd
a4cacd3402 Add tag_map argument to CLI debug-data and train (#4750)
Add an argument for a path to a JSON-formatted tag map, which is used to
update and extend the default language tag map.
2019-12-13 10:46:18 +01:00
Sofie Van Landeghem
f9b541f9ef More robust set entities method in KB (#4794)
* add unit test for setting entities with duplicate identifiers

* count the number of actual unique identifiers and throw duplicate warning
2019-12-13 10:45:29 +01:00
adrianeboyd
eb9b1858c4 Add NER map option to convert CLI (#4763)
Instead of a hard-coded NER tag simplification function that was only
intended for NorNE, map NER tags in CoNLL-U converter using a dict
provided as JSON as a command-line option.

Map NER entity types or new tag or to "" for 'O', e.g.:

```
{"PER": "PERSON", "BAD": ""}

=>

B-PER -> B-PERSON
B-BAD -> O
```
2019-12-11 18:20:49 +01:00
Sofie Van Landeghem
5355b0038f Update EL example (#4789)
* update EL example script after sentence-central refactor

* version bump

* set incl_prior to False for quick demo purposes

* clean up
2019-12-11 18:19:42 +01:00
adrianeboyd
38e1bc19f4 Add destructors for states in TransitionSystem (#4686) 2019-12-10 13:23:27 +01:00
adrianeboyd
c208eb6e4d Fix int value handling in Matcher (#4749)
Add `int` values (for `LENGTH`) in _get_attr_values() instead of
treating `int` like `dict`.
2019-12-06 19:22:57 +01:00
Sofie Van Landeghem
780d43aac7 fix bug in EL predict (#4779) 2019-12-06 19:18:14 +01:00
adrianeboyd
676e75838f Include Doc.cats in serialization of Doc and DocBin (#4774)
* Include Doc.cats in to_bytes()

* Include Doc.cats in DocBin serialization

* Add tests for serialization of cats

Test serialization of cats for Doc and DocBin.
2019-12-06 14:07:39 +01:00
Antti Ajanki
e626a011cc Improvements to the Finnish language data (#4738)
* Enable lex_attrs on Finnish

* Copy the Danish tokenizer rules to Finnish

Specifically, don't break hyphenated compound words

* Contributor agreement

* A new file for Finnish tokenizer rules instead of including the Danish ones
2019-12-03 12:55:28 +01:00
Christoph Purschke
a7ee4b6f17 new tests & tokenization fixes (#4734)
- added some tests for tokenization issues
- fixed some issues with tokenization of words with hyphen infix
- rewrote the "tokenizer_exceptions.py" file (stemming from the German version)
2019-12-01 23:08:21 +01:00
adrianeboyd
68f711b409 Fix conllu2json n_sents and raw text (#4728)
Update conllu2json converter to include raw text in final batch.
2019-11-29 10:22:03 +01:00
adrianeboyd
79ba1a3b92 Add lemmas to GoldParse / Example / docs_to_json (#4726) 2019-11-28 14:53:44 +01:00
adrianeboyd
b841d3fe75 Add a tagger-based SentenceRecognizer (#4713)
* Add sent_starts to GoldParse

* Add SentTagger pipeline component

Add `SentTagger` pipeline component as a subclass of `Tagger`.

* Model reduces default parameters from `Tagger` to be small and fast
* Hard-coded set of two labels:
  * S (1): token at beginning of sentence
  * I (0): all other sentence positions
* Sets `token.sent_start` values

* Add sentence segmentation to Scorer

Report `sent_p/r/f` for sentence boundaries, which may be provided by
various pipeline components.

* Add sentence segmentation to CLI evaluate

* Add senttagger metrics/scoring to train CLI

* Rename SentTagger to SentenceRecognizer

* Add SentenceRecognizer to spacy.pipes imports

* Add SentenceRecognizer serialization test

* Shorten component name to sentrec

* Remove duplicates from train CLI output metrics
2019-11-28 11:10:07 +01:00
adrianeboyd
48ea2e8d0f Restructure Sentencizer to follow Pipe API (#4721)
* Restructure Sentencizer to follow Pipe API

Restructure Sentencizer to follow Pipe API so that it can be scored with
`nlp.evaluate()`.

* Add Sentencizer pipe() test
2019-11-27 16:33:34 +01:00
adrianeboyd
9efd3ccbef Update conllu2json MISC column handling (#4715)
Update converter to handle various things in MISC column:

* `SpaceAfter=No` and set raw text accordingly
* plain NER tag
* name=NER (for NorNE)
2019-11-26 16:10:08 +01:00
adrianeboyd
9aab0a55e1 Fix conllu2json converter to output all sentences (#4716)
Make sure that the last batch of sentences is output if n_sents > 1.
2019-11-26 16:05:17 +01:00
adrianeboyd
0c9640ced3 Replace old gold alignment with new gold alignment (#4710)
Replace old gold alignment that allowed for some noise in the alignment between raw and orth with the new simpler alignment that requires that the raw and orth strings are identical except for whitespace and capitalization.

* Replace old alignment with new alignment, removing `_align.pyx` and
its tests
* Remove all quote normalizations
* Enable test for new align
  * Modify test case for quote normalization
2019-11-25 23:13:26 +01:00