* Adjust Table API and add docs
* Add attributes and update description [ci skip]
* Use strings.get_string_id instead of hash_string
* Fix table method calls
* Make orth arg in Lemmatizer.lookup optional
Fall back to string, which is now handled by Table.__contains__ out-of-the-box
* Fix method name
* Auto-format
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Lookups / Tables now work
This implements the stubs in the Lookups/Table classes. Currently this
is in Cython but with no type declarations, so that could be improved.
* Add lookups to setup.py
* Actually add lookups pyx
The previous commit added the old py file...
* Lookups work-in-progress
* Move from pyx back to py
* Add string based lookups, fix serialization
* Update tests, language/lemmatizer to work with string lookups
There are some outstanding issues here:
- a pickling-related test fails due to the bloom filter
- some custom lemmatizers (fr/nl at least) have issues
More generally, there's a question of how to deal with the case where
you have a string but want to use the lookup table. Currently the table
allows access by string or id, but that's getting pretty awkward.
* Change lemmatizer lookup method to pass (orth, string)
* Fix token lookup
* Fix French lookup
* Fix lt lemmatizer test
* Fix Dutch lemmatizer
* Fix lemmatizer lookup test
This was using a normal dict instead of a Table, so checks for the
string instead of an integer key failed.
* Make uk/nl/ru lemmatizer lookup methods consistent
The mentioned tokenizers all have their own implementation of the
`lookup` method, which accesses a `Lookups` table. The way that was
called in `token.pyx` was changed so this should be updated to have the
same arguments as `lookup` in `lemmatizer.py` (specificially (orth/id,
string)).
Prior to this change tests weren't failing, but there would probably be
issues with normal use of a model. More tests should proably be added.
Additionally, the language-specific `lookup` implementations seem like
they might not be needed, since they handle things like lower-casing
that aren't actually language specific.
* Make recently added Greek method compatible
* Remove redundant class/method
Leftovers from a merge not cleaned up adequately.
* Allow copying the user_data with as_doc + unit test
* add option to docs
* add typing
* import fix
* workaround to avoid bool clashing ...
* bint instead of bool
* Modify retokenizer to use span root attributes
* tag/pos/morph are set to root tag/pos/morph
* lemma and norm are reset and end up as orth (not ideal, but better
than orth of first token)
* Also handle individual merge case
* Add test
* Attempt to handle ent_iob and ent_type in merges
* Fix check for whether B-ENT should become I-ENT
* Move IOB consistency check to after attrs
Move all IOB consistency checks after attrs are set and simplify to
check entire document, modifying I to B at the beginning of the document
or if the entity type of the previous token isn't the same.
* Move IOB consistency check for single merge
Move IOB consistency check after the token array is compressed for the
single merge case.
* Update spacy/tokens/_retokenize.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
* Remove single vs. multiple merge distinction
Remove original single-instance `_merge()` and use `_bulk_merge()` (now
renamed `_merge()`) for all merges.
* Add out-of-bound check in previous entity check
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* turn kb_creator into CLI script (wip)
* proper parameters for training entity vectors
* wikidata pipeline split up into two executable scripts
* remove context_width
* move wikidata scripts in bin directory, remove old dummy script
* refine KB script with logs and preprocessing options
* small edits
* small improvements to logging of EL CLI script
* failing unit test for issue 3962
* attempt to fix Issue #3962
* create artificial unit test example
* using length instead of self.length
* sp
* reformat with black
* find better ancestor within span and use generic 'dep'
* attach to span.root if there is no appropriate ancestor
* comment span text
* clean up ancestor code
* reconstruct dep tree to keep same number of sentences
* Add custom __dir__ to Underscore (see #3707)
* Make sure custom extension methods keep their docstrings (see #3707)
* Improve tests
* Prepend note on partial to docstring (see #3707)
* Remove print statement
* Handle cases where docstring is None
* label in span not writable anymore
* more explicit unit test and error message for readonly label
* bit more explanation (view)
* error msg tailored to specific case
* fix None case
Closes#2203. Closes#3268.
Lemmas set from outside the `Morphology` class were being overwritten. The result was especially confusing when deserialising, as it meant some lemmas could change when storing and retrieving a `Doc` object.
This PR applies two fixes:
1) When we go to set the lemma in the `Morphology` class, first check whether a lemma is already set. If so, don't overwrite.
2) When we load with `doc.from_array()`, take care to apply the `TAG` field first. This allows other fields to overwrite the `TAG` implied properties, if they're provided explicitly (e.g. the `LEMMA`).
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Make serialization methods consistent
exclude keyword argument instead of random named keyword arguments and deprecation handling
* Update docs and add section on serialization fields
* Use default return instead of else
* Add Doc.is_nered to indicate if entities have been set
* Add properties in Doc.to_json if they were set, not if they're available
This way, if a processed Doc exports "pos": None, it means that the tag was explicitly unset. If it exports "ents": [], it means that entity annotations are available but that this document doesn't contain any entities. Before, this would have been unclear and problematic for training.
<!--- Provide a general summary of your changes in the title. -->
## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs
### Types of change
enhancement, docs
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
<!--- Provide a general summary of your changes in the title. -->
## Description
This PR adds the abilility to override custom extension attributes during merging. This will only work for attributes that are writable, i.e. attributes registered with a default value like `default=False` or attribute that have both a getter *and* a setter implemented.
```python
Token.set_extension('is_musician', default=False)
doc = nlp("I like David Bowie.")
with doc.retokenize() as retokenizer:
attrs = {"LEMMA": "David Bowie", "_": {"is_musician": True}}
retokenizer.merge(doc[2:4], attrs=attrs)
assert doc[2].text == "David Bowie"
assert doc[2].lemma_ == "David Bowie"
assert doc[2]._.is_musician
```
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Change retokenize.split() API for heads
* Pass lists as values for attrs in split
* Fix test_doc_split filename
* Add error for mismatched tokens after split
* Raise error if new tokens don't match text
* Fix doc test
* Fix error
* Move deps under attrs
* Fix split tests
* Fix retokenize.split
* Add split one token into several (resolves#2838)
* Improve error message for token splitting
* Make retokenizer.split() tests use a Token object
Change retokenizer.split() to use a Token object, instead of an index.
* Pass Token into retokenize.split()
Tweak retokenize.split() API so that we pass the `Token` object, not the index.
* Fix token.idx in retokenize.split()
* Test that token.idx is correct after split
* Fix token.idx for split tokens
* Fix retokenize.split()
* Fix retokenize.split
* Fix retokenize.split() test
This PR adds a test for an untested case of `Span.get_lca_matrix`, and fixes a bug for that scenario, which I introduced in [this PR](https://github.com/explosion/spaCy/pull/3089) (sorry!).
## Description
The previous implementation of get_lca_matrix was failing for the case `doc[j:k].get_lca_matrix()` where `j > 0`. A test has been added for this case and the bug has been fixed.
### Types of change
Bug fix
## Checklist
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
If doc.from_array() was called with say, only entity information, this
would cause doc.is_tagged to be set to False, even if tags were set.
This caused tags to be dropped from serialisation. The same was true for
doc.is_parsed.
Closes#3012.
Initially span.as_doc() was designed to return a view of the span's contents, as a Doc object. This was a nice idea, but it fails due to the token.idx property, which refers to the character offset within the string. In a span, the idx of the first token might not be 0. Because this data is different, we can't have a view --- it'll be inconsistent.
This patch changes span.as_doc() to instead return a copy. The docs are updated accordingly. Closes#1537
* Update test for span.as_doc()
* Make span.as_doc() return a copy. Closes#1537
* Document change to Span.as_doc()
The doc.retokenize() context manager wasn't resizing doc.tensor, leading to a mismatch between the number of tokens in the doc and the number of rows in the tensor. We fix this by deleting rows from the tensor. Merged spans are represented by the vector of their last token.
* Add test for resizing doc.tensor when merging
* Add test for resizing doc.tensor when merging. Closes#1963
* Update get_lca_matrix test for develop
* Fix retokenize if tensor unset
* Test on #2396: bug in Doc.get_lca_matrix()
* reimplementation of Doc.get_lca_matrix(), (closes#2396)
* reimplement Span.get_lca_matrix(), and call it from Doc.get_lca_matrix()
* tests Span.get_lca_matrix() as well as Doc.get_lca_matrix()
* implement _get_lca_matrix as a helper function in doc.pyx; call it from Doc.get_lca_matrix and Span.get_lca_matrix
* use memory view instead of np.ndarray in _get_lca_matrix (faster)
* fix bug when calling Span.get_lca_matrix; return lca matrix as np.array instead of memoryview
* cleaner conditional, add comment
* Test on #2396: bug in Doc.get_lca_matrix()
* reimplementation of Doc.get_lca_matrix(), (closes#2396)
* reimplement Span.get_lca_matrix(), and call it from Doc.get_lca_matrix()
* tests Span.get_lca_matrix() as well as Doc.get_lca_matrix()
* implement _get_lca_matrix as a helper function in doc.pyx; call it from Doc.get_lca_matrix and Span.get_lca_matrix
* use memory view instead of np.ndarray in _get_lca_matrix (faster)
* fix bug when calling Span.get_lca_matrix; return lca matrix as np.array instead of memoryview
* cleaner conditional, add comment
Fixes#3027.
* Allow Span.__init__ to take unicode values for the `label` argument.
* Allow `Span.label_` to be writeable.
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
See #3028. The solution in this patch is pretty debateable.
What we do is give the TokenC struct a .norm field, by repurposing the previously idle .sense attribute. It's nice to repurpose a previous field because it means the TokenC doesn't change size, so even if someone's using the internals very deeply, nothing will break.
The weird thing here is that the TokenC and the LexemeC both have an attribute named NORM. This arguably assists in backwards compatibility. On the other hand, maybe it's really bad! We're changing the semantics of the attribute subtly, so maybe it's better if someone calling lex.norm gets a breakage, and instead is told to write lex.default_norm?
Overall I believe this patch makes the NORM feature work the way we sort of expected it to work. Certainly it's much more like how the docs describe it, and more in line with how we've been directing people to use the norm attribute. We'll also be able to use token.norm to do stuff like spelling correction, which is pretty cool.
Remove hacks and wrappers, keep code in sync across our libraries and move spaCy a few steps closer to only depending on packages with binary wheels 🎉
See here: https://github.com/explosion/srsly
Serialization is hard, especially across Python versions and multiple platforms. After dealing with many subtle bugs over the years (encodings, locales, large files) our libraries like spaCy and Prodigy have steadily grown a number of utility functions to wrap the multiple serialization formats we need to support (especially json, msgpack and pickle). These wrapping functions ended up duplicated across our codebases, so we wanted to put them in one place.
At the same time, we noticed that having a lot of small dependencies was making maintainence harder, and making installation slower. To solve this, we've made srsly standalone, by including the component packages directly within it. This way we can provide all the serialization utilities we need in a single binary wheel.
srsly currently includes forks of the following packages:
ujson
msgpack
msgpack-numpy
cloudpickle
* WIP: replace json/ujson with srsly
* Replace ujson in examples
Use regular json instead of srsly to make code easier to read and follow
* Update requirements
* Fix imports
* Fix typos
* Replace msgpack with srsly
* Fix warning
* Support nowrap setting in util.prints
* Tidy up and fix whitespace
* Simplify script and use read_jsonl helper
* Add JSON schemas (see #2928)
* Deprecate Doc.print_tree
Will be replaced with Doc.to_json, which will produce a unified format
* Add Doc.to_json() method (see #2928)
Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.
* Remove outdated test
* Add write_json and write_jsonl helpers
* WIP: Update spacy train
* Tidy up spacy train
* WIP: Use wasabi for formatting
* Add GoldParse helpers for JSON format
* WIP: add debug-data command
* Fix typo
* Add missing import
* Update wasabi pin
* Add missing import
* 💫 Refactor CLI (#2943)
To be merged into #2932.
## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Update wasabi pin
* Delete old test
* Update errors
* Fix typo
* Tidy up and format remaining code
* Fix formatting
* Improve formatting of messages
* Auto-format remaining code
* Add tok2vec stuff to spacy.train
* Fix typo
* Update wasabi pin
* Fix path checks for when train() is called as function
* Reformat and tidy up pretrain script
* Update argument annotations
* Raise error if model language doesn't match lang
* Document new train command