mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 14:04:12 +03:00
8ca71f9591
6 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Adriane Boyd
|
5eeb25f043 | Tidy up code | ||
svlandeg
|
d900c55061 | consistently use registry as callable | ||
Ines Montani
|
e3f40a6a0f | Tidy up and auto-format | ||
Sofie Van Landeghem
|
569cc98982
|
Update spaCy for thinc 8.0.0 (#4920)
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io> |
||
Ines Montani
|
db55577c45
|
Drop Python 2.7 and 3.5 (#4828)
* Remove unicode declarations * Remove Python 3.5 and 2.7 from CI * Don't require pathlib * Replace compat helpers * Remove OrderedDict * Use f-strings * Set Cython compiler language level * Fix typo * Re-add OrderedDict for Table * Update setup.cfg * Revert CONTRIBUTING.md * Revert lookups.md * Revert top-level.md * Small adjustments and docs [ci skip] |
||
adrianeboyd
|
faaa832518 |
Generalize handling of tokenizer special cases (#4259)
* Generalize handling of tokenizer special cases Handle tokenizer special cases more generally by using the Matcher internally to match special cases after the affix/token_match tokenization is complete. Instead of only matching special cases while processing balanced or nearly balanced prefixes and suffixes, this recognizes special cases in a wider range of contexts: * Allows arbitrary numbers of prefixes/affixes around special cases * Allows special cases separated by infixes Existing tests/settings that couldn't be preserved as before: * The emoticon '")' is no longer a supported special case * The emoticon ':)' in "example:)" is a false positive again When merged with #4258 (or the relevant cache bugfix), the affix and token_match properties should be modified to flush and reload all special cases to use the updated internal tokenization with the Matcher. * Remove accidentally added test case * Really remove accidentally added test * Reload special cases when necessary Reload special cases when affixes or token_match are modified. Skip reloading during initialization. * Update error code number * Fix offset and whitespace in Matcher special cases * Fix offset bugs when merging and splitting tokens * Set final whitespace on final token in inserted special case * Improve cache flushing in tokenizer * Separate cache and specials memory (temporarily) * Flush cache when adding special cases * Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()` are necessary due to this bug: https://github.com/explosion/preshed/issues/21 * Remove reinitialized PreshMaps on cache flush * Update UD bin scripts * Update imports for `bin/` * Add all currently supported languages * Update subtok merger for new Matcher validation * Modify blinded check to look at tokens instead of lemmas (for corpora with tokens but not lemmas like Telugu) * Use special Matcher only for cases with affixes * Reinsert specials cache checks during normal tokenization for special cases as much as possible * Additionally include specials cache checks while splitting on infixes * Since the special Matcher needs consistent affix-only tokenization for the special cases themselves, introduce the argument `with_special_cases` in order to do tokenization with or without specials cache checks * After normal tokenization, postprocess with special cases Matcher for special cases containing affixes * Replace PhraseMatcher with Aho-Corasick Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays of the hash values for the relevant attribute. The implementation is based on FlashText. The speed should be similar to the previous PhraseMatcher. It is now possible to easily remove match IDs and matches don't go missing with large keyword lists / vocabularies. Fixes #4308. * Restore support for pickling * Fix internal keyword add/remove for numpy arrays * Add test for #4248, clean up test * Improve efficiency of special cases handling * Use PhraseMatcher instead of Matcher * Improve efficiency of merging/splitting special cases in document * Process merge/splits in one pass without repeated token shifting * Merge in place if no splits * Update error message number * Remove UD script modifications Only used for timing/testing, should be a separate PR * Remove final traces of UD script modifications * Update UD bin scripts * Update imports for `bin/` * Add all currently supported languages * Update subtok merger for new Matcher validation * Modify blinded check to look at tokens instead of lemmas (for corpora with tokens but not lemmas like Telugu) * Add missing loop for match ID set in search loop * Remove cruft in matching loop for partial matches There was a bit of unnecessary code left over from FlashText in the matching loop to handle partial token matches, which we don't have with PhraseMatcher. * Replace dict trie with MapStruct trie * Fix how match ID hash is stored/added * Update fix for match ID vocab * Switch from map_get_unless_missing to map_get * Switch from numpy array to Token.get_struct_attr Access token attributes directly in Doc instead of making a copy of the relevant values in a numpy array. Add unsatisfactory warning for hash collision with reserved terminal hash key. (Ideally it would change the reserved terminal hash and redo the whole trie, but for now, I'm hoping there won't be collisions.) * Restructure imports to export find_matches * Implement full remove() Remove unnecessary trie paths and free unused maps. Parallel to Matcher, raise KeyError when attempting to remove a match ID that has not been added. * Switch to PhraseMatcher.find_matches * Switch to local cdef functions for span filtering * Switch special case reload threshold to variable Refer to variable instead of hard-coded threshold * Move more of special case retokenize to cdef nogil Move as much of the special case retokenization to nogil as possible. * Rewrap sort as stdsort for OS X * Rewrap stdsort with specific types * Switch to qsort * Fix merge * Improve cmp functions * Fix realloc * Fix realloc again * Initialize span struct while retokenizing * Temporarily skip retokenizing * Revert "Move more of special case retokenize to cdef nogil" This reverts commit |