* Improve token head verification
Improve the verification for valid token heads when heads are set:
* in `Token.head`: heads come from the same document
* in `Doc.from_array()`: head indices are within the bounds of the
document
* Improve error message
* Fix model-final/model-best meta
* include speed and accuracy from final iteration
* combine with speeds from base model if necessary
* Include token_acc metric for all components
* add lemma option to displacy 'dep' visualiser
* more compact list comprehension
* add option to doc
* fix test and add lemmas to util.get_doc
* fix capital
* remove lemma from get_doc
* cleanup
* Fix german stop words
Two stop words ("einige" and "einigen") are sticking together.
Remove three nouns that may serve as stop words in a specific context (e.g. religious or news) but are not applicable for general use.
* Create Jan-711.md
* Fix ent_ids and labels properties when id attribute used in patterns
* use set for labels
* sort end_ids for comparison in entity_ruler tests
* fixing entity_ruler ent_ids test
* add to set
* Run make_doc optimistically if using phrase matcher patterns.
* remove unused coveragerc I was testing with
* format
* Refactor EntityRuler.add_patterns to use nlp.pipe for phrase patterns. Improves speed substantially.
* Removing old add_patterns function
* Fixing spacing
* Make sure token_patterns loaded as well, before generator was being emptied in from_disk
* Sync Span __eq__ and __hash__
Use the same tuple for `__eq__` and `__hash__`, including all attributes
except `vector` and `vector_norm`.
* Update entity comparison in tests
Update `assert_docs_equal()` test util to compare `Span` properties for
ents rather than `Span` objects.
Modify flag settings so that `DEP` is not sufficient to set `is_parsed`
and only run `set_children_from_heads()` if `HEAD` is provided.
Then the combination `[SENT_START, DEP]` will set deps and not clobber
sent starts with a lot of one-word sentences.
* Rename `tag_map.py` to `tag_map_fine.py` to indicate that it's not the
default tag map
* Remove duplicate generic UD tag map and load `../tag_map.py` instead
* don't split on a colon. Colon is used to attach suffixes for abbreviations
* tokenize on any of LIST_HYPHENS (except a single hyphen), not just on --
* simplify infix rules by merging similar rules
* Add correct stopwords for Slovak language
* Add SNK Tags
* Disable formatting lint for TAGS
* Add example sentences for Slovak language
* Add slovak numerals in base form
* Add lex_attrs to sk init
* Add contributor agreement
* Fix ent_ids and labels properties when id attribute used in patterns
* use set for labels
* sort end_ids for comparison in entity_ruler tests
* fixing entity_ruler ent_ids test
* add to set
Improve train CLI with a provided base model so that you can:
* add a new component
* extend an existing component
* replace an existing component
When the final model and best model are saved, reenable any disabled
components and merge the meta information to include the full pipeline
and accuracy information for all components in the base model plus the
newly added components if needed.
* Mark most Hungarian tokenizer test cases as slow
Mark most Hungarian tokenizer test cases as slow to reduce the runtime
of the test suite in ordinary usage:
* for normal tests: run default tests plus 10% of the detailed tests
* for slow tests: run all tests
* Rework to mark individual tests as slow
* move nlp processing for el pipe to batch training instead of preprocessing
* adding dev eval back in, and limit in articles instead of entities
* use pipe whenever possible
* few more small doc changes
* access dev data through generator
* tqdm description
* small fixes
* update documentation
* match domains longer than `hostname.domain.tld` like `www.foo.co.uk`
* expand allowed characters in domain names while only matching
lowercase TLDs so that "this.That" isn't matched as a URL and can be
split on the period as an infix (relevant for at least English, German,
and Tatar)
* expand serialization test for custom token attribute
* add failing test for issue 4849
* define ENT_ID as attr and use in doc serialization
* fix few typos
* Adding Support for Yoruba
* test text
* Updated test string.
* Fixing encoding declaration.
* Adding encoding to stop_words.py
* Added contributor agreement and removed iranlowo.
* Added removed test files and removed iranlowo to keep project bare.
* Returned CONTRIBUTING.md to default state.
* Added delted conftest entries
* Tidy up and auto-format
* Revert CONTRIBUTING.md
Co-authored-by: Ines Montani <ines@ines.io>
* Include Doc.cats in to_bytes()
* Include Doc.cats in DocBin serialization
* Add tests for serialization of cats
Test serialization of cats for Doc and DocBin.
* Enable lex_attrs on Finnish
* Copy the Danish tokenizer rules to Finnish
Specifically, don't break hyphenated compound words
* Contributor agreement
* A new file for Finnish tokenizer rules instead of including the Danish ones
- added some tests for tokenization issues
- fixed some issues with tokenization of words with hyphen infix
- rewrote the "tokenizer_exceptions.py" file (stemming from the German version)
* Restructure Sentencizer to follow Pipe API
Restructure Sentencizer to follow Pipe API so that it can be scored with
`nlp.evaluate()`.
* Add Sentencizer pipe() test
Iterate over lr_edges until all heads are within the current sentence.
Instead of iterating over them for a fixed number of iterations, check
whether the sentence boundaries are correct for the heads and stop when
all are correct. Stop after a maximum of 10 iterations, providing a
warning in this case since the sentence boundaries may not be correct.
* Switch from mecab-python3 to fugashi
mecab-python3 has been the best MeCab binding for a long time but it's
not very actively maintained, and since it's based on old SWIG code
distributed with MeCab there's a limit to how effectively it can be
maintained.
Fugashi is a new Cython-based MeCab wrapper I wrote. Since it's not
based on the old SWIG code it's easier to keep it current and make small
deviations from the MeCab C/C++ API where that makes sense.
* Change mecab-python3 to fugashi in setup.cfg
* Change "mecab tags" to "unidic tags"
The tags come from MeCab, but the tag schema is specified by Unidic, so
it's more proper to refer to it that way.
* Update conftest
* Add fugashi link to external deps list for Japanese
* Detect more empty matches in tokenizer.explain()
* Include a few languages in explain non-slow tests
Mark a few languages in tokenizer.explain() tests as not slow so they're
run by default.
* Expose tokenizer rules as a property
Expose the tokenizer rules property in the same way as the other core
properties. (The cache resetting is overkill, but consistent with
`from_bytes` for now.)
Add tests and update Tokenizer API docs.
* Update Hungarian punctuation to remove empty string
Update Hungarian punctuation definitions so that `_units` does not match
an empty string.
* Use _load_special_tokenization consistently
Use `_load_special_tokenization()` and have it to handle `None` checks.
* Fix precedence of `token_match` vs. special cases
Remove `token_match` check from `_split_affixes()` so that special cases
have precedence over `token_match`. `token_match` is checked only before
infixes are split.
* Add `make_debug_doc()` to the Tokenizer
Add `make_debug_doc()` to the Tokenizer as a working implementation of
the pseudo-code in the docs.
Add a test (marked as slow) that checks that `nlp.tokenizer()` and
`nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens
for all languages that have `examples.sentences` that can be imported.
* Update tokenization usage docs
Update pseudo-code and algorithm description to correspond to
`nlp.tokenizer.make_debug_doc()` with example debugging usage.
Add more examples for customizing tokenizers while preserving the
existing defaults.
Minor edits / clarifications.
* Revert "Update Hungarian punctuation to remove empty string"
This reverts commit f0a577f7a5.
* Rework `make_debug_doc()` as `explain()`
Rework `make_debug_doc()` as `explain()`, which returns a list of
`(pattern_string, token_string)` tuples rather than a non-standard
`Doc`. Update docs and tests accordingly, leaving the visualization for
future work.
* Handle cases with bad tokenizer patterns
Detect when tokenizer patterns match empty prefixes and suffixes so that
`explain()` does not hang on bad patterns.
* Remove unused displacy image
* Add tokenizer.explain() to usage docs