* precompute_hiddens/Parser: do not look up CPU ops
`get_ops("cpu")` is quite expensive. To avoid this, we want to cache the
result as in #11068. However, for 3.x we do not want to change the ABI.
So we avoid the expensive lookup by using NumpyOps. This should have a
minimal impact, since `get_ops("cpu")` was only used when the model ops
were `CupyOps`. If the ops are `AppleOps`, we are still passing through
the correct BLAS implementation.
* _NUMPY_OPS -> NUMPY_OPS
* Parser: use C saxpy/sgemm provided by the Ops implementation
This is a backport of https://github.com/explosion/spaCy/pull/10747
from the parser refactor branch. It eliminates the explicit calls
to BLIS, instead using the saxpy/sgemm provided by the Ops
implementation.
This allows us to use Accelerate in the parser on M1 Macs (with
an updated thinc-apple-ops).
Performance of the de_core_news_lg pipe:
BLIS 0.7.0, no thinc-apple-ops: 6385 WPS
BLIS 0.7.0, thinc-apple-ops: 36455 WPS
BLIS 0.9.0, no thinc-apple-ops: 19188 WPS
BLIS 0.9.0, thinc-apple-ops: 36682 WPS
This PR, thinc-apple-ops: 38726 WPS
Performance of the de_core_news_lg pipe (only tok2vec -> parser):
BLIS 0.7.0, no thinc-apple-ops: 13907 WPS
BLIS 0.7.0, thinc-apple-ops: 73172 WPS
BLIS 0.9.0, no thinc-apple-ops: 41576 WPS
BLIS 0.9.0, thinc-apple-ops: 72569 WPS
This PR, thinc-apple-ops: 87061 WPS
* Require thinc >=8.1.0,<8.2.0
* Lower thinc lowerbound to 8.1.0.dev0
* Use best CPU ops for CBLAS when the parser model is on the GPU
* Fix another unguarded cblas() call
* Fix: use ops as a shorthand for self.model.ops
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
* Add scorer option to components
Add an optional `scorer` parameter to all pipeline components. If a
scoring function is provided, it overrides the default scoring method
for that component.
* Add registered scorers for all components
* Add `scorers` registry
* Move all scoring methods outside of components as independent
functions and register
* Use the registered scoring methods as defaults in configs and inits
Additional:
* The scoring methods no longer have access to the full component, so
use settings from `cfg` as default scorer options to handle settings
such as `labels`, `threshold`, and `positive_label`
* The `attribute_ruler` scoring method no longer has access to the
patterns, so all scoring methods are called
* Bug fix: `spancat` scoring method is updated to set `allow_overlap` to
score overlapping spans correctly
* Update Russian lemmatizer to use direct score method
* Check type of cfg in Pipe.score
* Fix check
* Update spacy/pipeline/sentencizer.pyx
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Remove validate_examples from scoring functions
* Use Pipe.labels instead of Pipe.cfg["labels"]
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Pass excludes when serializing vocab
Additional minor bug fix:
* Deserialize vocab in `EntityLinker.from_disk`
* Add test for excluding strings on load
* Fix formatting
* Support a cfg field in transition system
* Make NER 'has gold' check use right alignment for span
* Pass 'negative_samples_key' property into NER transition system
* Add field for negative samples to NER transition system
* Check neg_key in NER has_gold
* Support negative examples in NER oracle
* Test for negative examples in NER
* Fix name of config variable in NER
* Remove vestiges of old-style partial annotation
* Remove obsolete tests
* Add comment noting lack of support for negative samples in parser
* Additions to "neg examples" PR (#8201)
* add custom error and test for deprecated format
* add test for unlearning an entity
* add break also for Begin's cost
* add negative_samples_key property on Parser
* rename
* extend docs & fix some older docs issues
* add subclass constructors, clean up tests, fix docs
* add flaky test with ValueError if gold parse was not found
* remove ValueError if n_gold == 0
* fix docstring
* Hack in environment variables to try out training
* Remove hack
* Remove NER hack, and support 'negative O' samples
* Fix O oracle
* Fix transition parser
* Remove 'not O' from oracle
* Fix NER oracle
* check for spans in both gold.ents and gold.spans and raise if so, to prevent memory access violation
* use set instead of list in consistency check
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add util method for check
* Add new languages to list with lexeme norm tables
* Add check to all relevant components
* Add config details to warning message
Note that we're not actually inspecting the model config to see if
`NORM` is used as an attribute, so it may warn in cases where it's not
relevant.
* add error handler for pipe methods
* add unit tests
* remove pipe method that are the same as their base class
* have Language keep track of a default error handler
* cleanup
* formatting
* small refactor
* add documentation
* Get basic beam tests working
* Get basic beam tests working
* Compile _beam_utils
* Remove prints
* Test beam density
* Beam parser seems to train
* Draft beam NER
* Upd beam
* Add hypothesis as dev dependency
* Implement missing is-gold-parse method
* Implement early update
* Fix state hashing
* Fix test
* Fix test
* Default to non-beam in parser constructor
* Improve oracle for beam
* Start refactoring beam
* Update test
* Refactor beam
* Update nn
* Refactor beam and weight by cost
* Update ner beam settings
* Update test
* Add __init__.pxd
* Upd test
* Fix test
* Upd test
* Fix test
* Remove ring buffer history from StateC
* WIP change arc-eager transitions
* Add state tests
* Support ternary sent start values
* Fix arc eager
* Fix NER
* Pass oracle cut size for beam
* Fix ner test
* Fix beam
* Improve StateC.clone
* Improve StateClass.borrow
* Work directly with StateC, not StateClass
* Remove print statements
* Fix state copy
* Improve state class
* Refactor parser oracles
* Fix arc eager oracle
* Fix arc eager oracle
* Use a vector to implement the stack
* Refactor state data structure
* Fix alignment of sent start
* Add get_aligned_sent_starts method
* Add test for ae oracle when bad sentence starts
* Fix sentence segment handling
* Avoid Reduce that inserts illegal sentence
* Update preset SBD test
* Fix test
* Remove prints
* Fix sent starts in Example
* Improve python API of StateClass
* Tweak comments and debug output of arc eager
* Upd test
* Fix state test
* Fix state test
* rename Pipe to TrainablePipe
* split functionality between Pipe and TrainablePipe
* remove unnecessary methods from certain components
* cleanup
* hasattr(component, "pipe") should be sufficient again
* remove serialization and vocab/cfg from Pipe
* unify _ensure_examples and validate_examples
* small fixes
* hasattr checks for self.cfg and self.vocab
* make is_resizable and is_trainable properties
* serialize strings.json instead of vocab
* fix KB IO + tests
* fix typos
* more typos
* _added_strings as a set
* few more tests specifically for _added_strings field
* bump to 3.0.0a36
* ensure Language passes on valid examples for initialization
* fix tagger model initialization
* check for valid get_examples across components
* assume labels were added before begin_training
* fix senter initialization
* fix morphologizer initialization
* use methods to check arguments
* test textcat init, requires thinc>=8.0.0a31
* fix tok2vec init
* fix entity linker init
* use islice
* fix simple NER
* cleanup debug model
* fix assert statements
* fix tests
* throw error when adding a label if the output layer can't be resized anymore
* fix test
* add failing test for simple_ner
* UX improvements
* morphologizer UX
* assume begin_training gets a representative set and processes the labels
* remove assumptions for output of untrained NER model
* restore test for original purpose
Follow-ups to the parser efficiency fix.
* Avoid introducing new counter for number of pushes
* Base cut on number of transitions, keeping it more even
* Reintroduce the randomization we had in v2.
The parser training makes use of a trick for long documents, where we
use the oracle to cut up the document into sections, so that we can have
batch items in the middle of a document. For instance, if we have one
document of 600 words, we might make 6 states, starting at words 0, 100,
200, 300, 400 and 500.
The problem is for v3, I screwed this up and didn't stop parsing! So
instead of a batch of [100, 100, 100, 100, 100, 100], we'd have a batch
of [600, 500, 400, 300, 200, 100]. Oops.
The implementation here could probably be improved, it's annoying to
have this extra variable in the state. But this'll do.
This makes the v3 parser training 5-10 times faster, depending on document
lengths. This problem wasn't in v2.
* moving syntax folder to _parser_internals
* moving nn_parser and transition_system
* move nn_parser and transition_system out of internals folder
* moving nn_parser code into transition_system file
* rename transition_system to transition_parser
* moving parser_model and _state to ml
* move _state back to internals
* The Parser now inherits from Pipe!
* small code fixes
* removing unnecessary imports
* remove link_vectors_to_models
* transition_system to internals folder
* little bit more cleanup
* newlines