* Limiting noun_chunks for specific langauges
* Limiting noun_chunks for specific languages
Contributor Agreement
* Addressing review comments
* Removed unused fixtures and imports
* Add fa_tokenizer in test suite
* Use fa_tokenizer in test
* Undo extraneous reformatting
Co-authored-by: adrianeboyd <adrianeboyd@gmail.com>
Instead of treating `'d` in contractions like `I'd` as `would` in all
cases in the tokenizer exceptions, leave the tagging and lemmatization
up to later components.
* Update English tag_map
Update English tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/en-penn-uposf.html
* Update German tag_map
Update German tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/de-stts-uposf.html
* Add missing Tiger dependencies to glossary
* Add quotes to definition of TO
* Update POS/TAG tables in docs
Update POS/TAG tables for English and German docs using current
information generated from the tag_maps and GLOSSARY.
* Update warning that -PRON- is specific to English
* Revert docs to default JSON output with convert
* Revert "Revert docs to default JSON output with convert"
This reverts commit 6b78c048f1.
* Add default to util.get_entry_point
* Tidy up entry points
* Read lookups from entry points
* Remove lookup tables and related tests
* Add lookups install option
* Remove lemmatizer tests
* Remove logic to process language data files
* Update setup.cfg
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Move Turkish lemmas to a json file
Rather than a large dict in Python source, the data is now a big json
file. This includes a method for loading the json file, falling back to
a compressed file, and an update to MANIFEST.in that excludes json in
the spacy/lang directory.
This focuses on Turkish specifically because it has the most language
data in core.
* Transition all lemmatizer.py files to json
This covers all lemmatizer.py files of a significant size (>500k or so).
Small files were left alone.
None of the affected files have logic, so this was pretty
straightforward.
One unusual thing is that the lemma data for Urdu doesn't seem to be
used anywhere. That may require further investigation.
* Move large lang data to json for fr/nb/nl/sv
These are the languages that use a lemmatizer directory (rather than a
single file) and are larger than English.
For most of these languages there were many language data files, in
which case only the large ones (>500k or so) were converted to json. It
may or may not be a good idea to migrate the remaining Python files to
json in the future.
* Fix id lemmas.json
The contents of this file were originally just copied from the Python
source, but that used single quotes, so it had to be properly converted
to json first.
* Add .json.gz to gitignore
This covers the json.gz files built as part of distribution.
* Add language data gzip to build process
Currently this gzip data on every build; it works, but it should be
changed to only gzip when the source file has been updated.
* Remove Danish lemmatizer.py
Missed this when I added the json.
* Update to match latest explosion/srsly#9
The way gzipped json is loaded/saved in srsly changed a bit.
* Only compress language data if necessary
If a .json.gz file exists and is newer than the corresponding json file,
it's not recompressed.
* Move en/el language data to json
This only affected files >500kb, which was nouns for both languages and
the generic lookup table for English.
* Remove empty files in Norwegian tokenizer
It's unclear why, but the Norwegian (nb) tokenizer had empty files for
adj/adv/noun/verb lemmas. This may have been a result of copying the
structure of the English lemmatizer.
This removed the files, but still creates the empty sets in the
lemmatizer. That may not actually be necessary.
* Remove dubious entries in English lookup.json
" furthest" and " skilled" - both prefixed with a space - were in the
English lookup table. That seems obviously wrong so I have removed them.
* Fix small issues with en/fr lemmatizers
The en tokenizer was including the removed _nouns.py file, so that's
removed.
The fr tokenizer is unusual in that it has a lemmatizer directory with
both __init__.py and lemmatizer.py. lemmatizer.py had not been converted
to load the json language data, so that was fixed.
* Auto-format
* Auto-format
* Update srsly pin
* Consistently use pathlib paths
* pytest file for issue4104 established
* edited default lookup english lemmatizer for spun; fixes issue 4102
* eliminated parameterization and sorted dictionary dependnency in issue 4104 test
* added contributor agreement
I wrote a small script to read the UD English training data and check
that our tag map and morph rules were resulting in the best POS map.
This hadn't been done for some time, and there have been various changes
to the UD schema since it has been done. After these changes we should
see much better agreement between our POS assignments and the UD POS
tags.
<!--- Provide a general summary of your changes in the title. -->
## Description
- [x] Use [`black`](https://github.com/ambv/black) to auto-format all `.py` files.
- [x] Update flake8 config to exclude very large files (lemmatization tables etc.)
- [x] Update code to be compatible with flake8 rules
- [x] Fix various small bugs, inconsistencies and messy stuff in the language data
- [x] Update docs to explain new code style (`black`, `flake8`, when to use `# fmt: off` and `# fmt: on` and what `# noqa` means)
Once #2932 is merged, which auto-formats and tidies up the CLI, we'll be able to run `flake8 spacy` actually get meaningful results.
At the moment, the code style and linting isn't applied automatically, but I'm hoping that the new [GitHub Actions](https://github.com/features/actions) will let us auto-format pull requests and post comments with relevant linting information.
### Types of change
enhancement, code style
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
Renaming the tag with an underscore lets us add it to the tag map
without worrying that we'll change the sequence of tags, which throws
off the tag-to-ID mapping. For instance, if we inserted a 'SP' tag,
the "VERB" tag is pushed to a different class ID, and the model is all
messed up.