* Make serialization methods consistent
exclude keyword argument instead of random named keyword arguments and deprecation handling
* Update docs and add section on serialization fields
<!--- Provide a general summary of your changes in the title. -->
## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs
### Types of change
enhancement, docs
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
Remove hacks and wrappers, keep code in sync across our libraries and move spaCy a few steps closer to only depending on packages with binary wheels 🎉
See here: https://github.com/explosion/srsly
Serialization is hard, especially across Python versions and multiple platforms. After dealing with many subtle bugs over the years (encodings, locales, large files) our libraries like spaCy and Prodigy have steadily grown a number of utility functions to wrap the multiple serialization formats we need to support (especially json, msgpack and pickle). These wrapping functions ended up duplicated across our codebases, so we wanted to put them in one place.
At the same time, we noticed that having a lot of small dependencies was making maintainence harder, and making installation slower. To solve this, we've made srsly standalone, by including the component packages directly within it. This way we can provide all the serialization utilities we need in a single binary wheel.
srsly currently includes forks of the following packages:
ujson
msgpack
msgpack-numpy
cloudpickle
* WIP: replace json/ujson with srsly
* Replace ujson in examples
Use regular json instead of srsly to make code easier to read and follow
* Update requirements
* Fix imports
* Fix typos
* Replace msgpack with srsly
* Fix warning
* Add spacy.errors module
* Update deprecation and user warnings
* Replace errors and asserts with new error message system
* Remove redundant asserts
* Fix whitespace
* Add messages for print/util.prints statements
* Fix typo
* Fix typos
* Move CLI messages to spacy.cli._messages
* Add decorator to display error code with message
An implementation like this is nice because it only modifies the string when it's retrieved from the containing class – so we don't have to worry about manipulating tracebacks etc.
* Remove unused link in spacy.about
* Update errors for invalid pipeline components
* Improve error for unknown factories
* Add displaCy warnings
* Update formatting consistency
* Move error message to spacy.errors
* Update errors and check if doc returned by component is None
Changed python set to cpp stl set #2032
## Description
Changed python set to cpp stl set. CPP stl set works better due to the logarithmic run time of its methods. Finding minimum in the cpp set is done in constant time as opposed to the worst case linear runtime of python set. Operations such as find,count,insert,delete are also done in either constant and logarithmic time thus making cpp set a better option to manage vectors.
Reference : http://www.cplusplus.com/reference/set/set/
### Types of change
Enhancement for `Vectors` for faster initialising of word vectors(fasttext)
This patch addresses #1660, which was caused by keying all pre-trained
vectors with the same ID when telling Thinc how to refer to them. This
meant that if multiple models were loaded that had pre-trained vectors,
errors or incorrect behaviour resulted.
The vectors class now includes a .name attribute, which defaults to:
{nlp.meta['lang']_nlp.meta['name']}.vectors
The vectors name is set in the cfg of the pipeline components under the
key pretrained_vectors. This replaces the previous cfg key
pretrained_dims.
In order to make existing models compatible with this change, we check
for the pretrained_dims key when loading models in from_disk and
from_bytes, and add the cfg key pretrained_vectors if we find it.