* fix the wrong hash url in adding-languages.md file
change the #101 url hash path to #language-data
* filled in the spaCy Contributor Agreement
filled in the spaCy Contributor Agreement
Provide more customized normalization table warnings when training a new
model. Only suggest installing `spacy-lookups-data` if it's not already
installed and it includes a table for this language (currently checked
in a hard-coded list).
* Improve tag map initialization and updating
Generalize tag map initialization and updating so that a provided tag
map can be loaded correctly in the CLI.
* normalize provided tag map as necessary
* use the same method for initializing and overwriting the tag map
* Reinitialize cache after loading new tag map
Reinitialize the cache with the right size after loading a new tag map.
* Use cosine loss in Cloze multitask
* Fix char_embed for gpu
* Call resume_training for base model in train CLI
* Fix bilstm_depth default in pretrain command
* Implement character-based pretraining objective
* Use chars loss in ClozeMultitask
* Add method to decode predicted characters
* Fix number characters
* Rescale gradients for mlm
* Fix char embed+vectors in ml
* Fix pipes
* Fix pretrain args
* Move get_characters_loss
* Fix import
* Fix import
* Mention characters loss option in pretrain
* Remove broken 'self attention' option in pretrain
* Revert "Remove broken 'self attention' option in pretrain"
This reverts commit 56b820f6af.
* Document 'characters' objective of pretrain
* entity linker training example: model loading changed according to issue 5668 (https://github.com/explosion/spaCy/issues/5668) + vocab_path is a required argument
* contributor agreement
Very minor fix in docs, specifically in this part:
```
matcher = PhraseMatcher(nlp.vocab)
> for doc in matcher.pipe(texts, batch_size=50):
> pass
```
`texts` suggests the input is an iterable of strings. I replaced it for `docs`.
* Convert custom user_data to token extension format
Convert the user_data values so that they can be loaded as custom token
extensions for `inflection`, `reading_form`, `sub_tokens`, and `lemma`.
* Reset Underscore state in ja tokenizer tests
Move `Lemmatizer.is_base_form` to the language settings so that each
language can provide a language-specific method as
`LanguageDefaults.is_base_form`.
The existing English-specific `Lemmatizer.is_base_form` is moved to
`EnglishDefaults`.
* Skip special tag _SP in check for new tag map
In `Tagger.begin_training()` check for new tags aside from `_SP` in the
new tag map initialized from the provided gold tuples when determining
whether to reinitialize the morphology with the new tag map.
* Simplify _SP check