* raise specific error when removing a matcher rule that doesn't exist
* rephrasing
* goldparse init: allocate fields only if doc is not empty
* avoid zero length alloc in saving tokenizer cache
* avoid allocating zero length mem in matcher
* asserts to avoid allocating zero length mem
* fix zero-length allocation in matcher
* bump cymem version
* revert cymem version bump
* remove duplicate unit test
* unit test (currently failing) for issue 4267
* bugfix: ensure doc.ents preserves kb_id annotations
* fix in setting doc.ents with empty label
* rename
* test for presetting an entity to a certain type
* allow overwriting Outside + blocking presets
* fix actions when previous label needs to be kept
* fix default ent_iob in set entities
* cleaner solution with U- action
* remove debugging print statements
* unit tests with explicit transitions and is_valid testing
* remove U- from move_names explicitly
* remove unit tests with pre-trained models that don't work
* remove (working) unit tests with pre-trained models
* clean up unit tests
* move unit tests
* small fixes
* remove two TODO's from doc.ents comments
* make merge more efficient
* fix offsets
* merge works with relative indices
* remove printing
* Add the SCA
* fix SCA date
* more cythonize _retokenize.pyx
* more cythonize _retokenize.pyx
* fix only declaration in _retokenize.pyx
* switch back to absolute head
* switch back to absolute head
* fix comment
* merge from origin repo
* Adjust Table API and add docs
* Add attributes and update description [ci skip]
* Use strings.get_string_id instead of hash_string
* Fix table method calls
* Make orth arg in Lemmatizer.lookup optional
Fall back to string, which is now handled by Table.__contains__ out-of-the-box
* Fix method name
* Auto-format
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Lookups / Tables now work
This implements the stubs in the Lookups/Table classes. Currently this
is in Cython but with no type declarations, so that could be improved.
* Add lookups to setup.py
* Actually add lookups pyx
The previous commit added the old py file...
* Lookups work-in-progress
* Move from pyx back to py
* Add string based lookups, fix serialization
* Update tests, language/lemmatizer to work with string lookups
There are some outstanding issues here:
- a pickling-related test fails due to the bloom filter
- some custom lemmatizers (fr/nl at least) have issues
More generally, there's a question of how to deal with the case where
you have a string but want to use the lookup table. Currently the table
allows access by string or id, but that's getting pretty awkward.
* Change lemmatizer lookup method to pass (orth, string)
* Fix token lookup
* Fix French lookup
* Fix lt lemmatizer test
* Fix Dutch lemmatizer
* Fix lemmatizer lookup test
This was using a normal dict instead of a Table, so checks for the
string instead of an integer key failed.
* Make uk/nl/ru lemmatizer lookup methods consistent
The mentioned tokenizers all have their own implementation of the
`lookup` method, which accesses a `Lookups` table. The way that was
called in `token.pyx` was changed so this should be updated to have the
same arguments as `lookup` in `lemmatizer.py` (specificially (orth/id,
string)).
Prior to this change tests weren't failing, but there would probably be
issues with normal use of a model. More tests should proably be added.
Additionally, the language-specific `lookup` implementations seem like
they might not be needed, since they handle things like lower-casing
that aren't actually language specific.
* Make recently added Greek method compatible
* Remove redundant class/method
Leftovers from a merge not cleaned up adequately.
* Allow copying the user_data with as_doc + unit test
* add option to docs
* add typing
* import fix
* workaround to avoid bool clashing ...
* bint instead of bool
* Modify retokenizer to use span root attributes
* tag/pos/morph are set to root tag/pos/morph
* lemma and norm are reset and end up as orth (not ideal, but better
than orth of first token)
* Also handle individual merge case
* Add test
* Attempt to handle ent_iob and ent_type in merges
* Fix check for whether B-ENT should become I-ENT
* Move IOB consistency check to after attrs
Move all IOB consistency checks after attrs are set and simplify to
check entire document, modifying I to B at the beginning of the document
or if the entity type of the previous token isn't the same.
* Move IOB consistency check for single merge
Move IOB consistency check after the token array is compressed for the
single merge case.
* Update spacy/tokens/_retokenize.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
* Remove single vs. multiple merge distinction
Remove original single-instance `_merge()` and use `_bulk_merge()` (now
renamed `_merge()`) for all merges.
* Add out-of-bound check in previous entity check
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* turn kb_creator into CLI script (wip)
* proper parameters for training entity vectors
* wikidata pipeline split up into two executable scripts
* remove context_width
* move wikidata scripts in bin directory, remove old dummy script
* refine KB script with logs and preprocessing options
* small edits
* small improvements to logging of EL CLI script
* failing unit test for issue 3962
* attempt to fix Issue #3962
* create artificial unit test example
* using length instead of self.length
* sp
* reformat with black
* find better ancestor within span and use generic 'dep'
* attach to span.root if there is no appropriate ancestor
* comment span text
* clean up ancestor code
* reconstruct dep tree to keep same number of sentences
* Add custom __dir__ to Underscore (see #3707)
* Make sure custom extension methods keep their docstrings (see #3707)
* Improve tests
* Prepend note on partial to docstring (see #3707)
* Remove print statement
* Handle cases where docstring is None