* added iob to int
* added tests
* added iob strings
* added error
* blacked attrs
* Update spacy/tests/lang/test_attrs.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/attrs.pyx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* added iob strings as global
* minor refinement with iob
* removed iob strings from token
* changed to uppercase
* cleaned and went back to master version
* imported iob from attrs
* Update and format errors
* Support and test both str and int ENT_IOB key
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* added ruler coe
* added error for none existing pattern
* changed error to warning
* changed error to warning
* added basic tests
* fixed place
* added test files
* went back to error
* went back to pattern error
* minor change to docs
* changed style
* changed doc
* changed error slightly
* added remove to phrasem api
* error key already existed
* phrase matcher match code to api
* blacked tests
* moved comments before expr
* corrected error no
* Update website/docs/api/entityruler.md
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update website/docs/api/entityruler.md
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* added error string
* added serialization test
* added more to if statements
* wrote file to tempdir
* added tempdir
* changed parameter a bit
* Update spacy/tests/pipeline/test_entity_ruler.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Clarify error when words are of wrong type
See #9437
* Update docs
* Use try/except
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Add support for fasttext-bloom hash-only vectors
Overview:
* Extend `Vectors` to have two modes: `default` and `ngram`
* `default` is the default mode and equivalent to the current
`Vectors`
* `ngram` supports the hash-only ngram tables from `fasttext-bloom`
* Extend `spacy.StaticVectors.v2` to handle both modes with no changes
for `default` vectors
* Extend `spacy init vectors` to support ngram tables
The `ngram` mode **only** supports vector tables produced by this
fork of fastText, which adds an option to represent all vectors using
only the ngram buckets table and which uses the exact same ngram
generation algorithm and hash function (`MurmurHash3_x64_128`).
`fasttext-bloom` produces an additional `.hashvec` table, which can be
loaded by `spacy init vectors --fasttext-bloom-vectors`.
https://github.com/adrianeboyd/fastText/tree/feature/bloom
Implementation details:
* `Vectors` now includes the `StringStore` as `Vectors.strings` so that
the API can stay consistent for both `default` (which can look up from
`str` or `int`) and `ngram` (which requires `str` to calculate the
ngrams).
* In ngram mode `Vectors` uses a default `Vectors` object as a cache
since the ngram vectors lookups are relatively expensive.
* The default cache size is the same size as the provided ngram vector
table.
* Once the cache is full, no more entries are added. The user is
responsible for managing the cache in cases where the initial
documents are not representative of the texts.
* The cache can be resized by setting `Vectors.ngram_cache_size` or
cleared with `vectors._ngram_cache.clear()`.
* The API ends up a bit split between methods for `default` and for
`ngram`, so functions that only make sense for `default` or `ngram`
include warnings with custom messages suggesting alternatives where
possible.
* `Vocab.vectors` becomes a property so that the string stores can be
synced when assigning vectors to a vocab.
* `Vectors` serializes its own config settings as `vectors.cfg`.
* The `Vectors` serialization methods have added support for `exclude`
so that the `Vocab` can exclude the `Vectors` strings while serializing.
Removed:
* The `minn` and `maxn` options and related code from
`Vocab.get_vector`, which does not work in a meaningful way for default
vector tables.
* The unused `GlobalRegistry` in `Vectors`.
* Refactor to use reduce_mean
Refactor to use reduce_mean and remove the ngram vectors cache.
* Rename to floret
* Rename to floret in error messages
* Use --vectors-mode in CLI, vector init
* Fix vectors mode in init
* Remove unused var
* Minor API and docstrings adjustments
* Rename `--vectors-mode` to `--mode` in `init vectors` CLI
* Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support
both modes.
* Minor updates to Vectors docstrings.
* Update API docs for Vectors and init vectors CLI
* Update types for StaticVectors
* Raise an error when multiprocessing is used on a GPU
As reported in #5507, a confusing exception is thrown when
multiprocessing is used with a GPU model and the `fork` multiprocessing
start method:
cupy.cuda.runtime.CUDARuntimeError: cudaErrorInitializationError: initialization error
This change checks whether one of the models uses the GPU when
multiprocessing is used. If so, raise a friendly error message.
Even though multiprocessing can work on a GPU with the `spawn` method,
it quickly runs the GPU out-of-memory on real-world data. Also,
multiprocessing on a single GPU typically does not provide large
performance gains.
* Move GPU multiprocessing check to Language.pipe
* Warn rather than error when using multiprocessing with GPU models
* Improve GPU multiprocessing warning message.
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Reduce API assumptions
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/language.py
* Update spacy/language.py
* Test that warning is thrown with GPU + multiprocessing
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* remove text argument from W108 to enable 'once' filtering
* include the option of partial POS annotation
* fix typo
* Update spacy/errors.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* use language-matching to allow language code aliases
Signed-off-by: Elia Robyn Speer <elia@explosion.ai>
* link to "IETF language tags" in docs
Signed-off-by: Elia Robyn Speer <elia@explosion.ai>
* Make requirements consistent
Signed-off-by: Elia Robyn Speer <elia@explosion.ai>
* change "two-letter language ID" to "IETF language tag" in language docs
Signed-off-by: Elia Robyn Speer <elia@explosion.ai>
* use langcodes 3.2 and handle language-tag errors better
Signed-off-by: Elia Robyn Speer <elia@explosion.ai>
* all unknown language codes are ImportErrors
Signed-off-by: Elia Robyn Speer <elia@explosion.ai>
Co-authored-by: Elia Robyn Speer <elia@explosion.ai>
* Accept Doc input in pipelines
Allow `Doc` input to `Language.__call__` and `Language.pipe`, which
skips `Language.make_doc` and passes the doc directly to the pipeline.
* ensure_doc helper function
* avoid running multiple processes on GPU
* Update spacy/tests/test_language.py
Co-authored-by: svlandeg <svlandeg@github.com>
* Validate pos values when creating Doc
* Add clear error when setting invalid pos
This also changes the error language slightly.
* Fix variable name
* Update spacy/tokens/doc.pyx
* Test that setting invalid pos raises an error
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix inference of epoch_resume
When an epoch_resume value is not specified individually, it can often
be inferred from the filename. The value inference code was there but
the value wasn't passed back to the training loop.
This also adds a specific error in the case where no epoch_resume value
is provided and it can't be inferred from the filename.
* Add new error
* Always use the epoch resume value if specified
Before this the value in the filename was used if found
* test for error after Doc has been garbage collected
* warn about using a SpanGroup when the Doc has been garbage collected
* add warning to the docs
* rephrase slightly
* raise error instead of warning
* update
* move warning to doc property
* Fix check for RIGHT_ATTRs in dep matcher
If a non-anchor node does not have RIGHT_ATTRS, the dep matcher throws
an E100, which says that non-anchor nodes must have LEFT_ID, REL_OP, and
RIGHT_ID. It specifically does not say RIGHT_ATTRS is required.
A blank RIGHT_ATTRS is also valid, and patterns with one will be
excepted. While not normal, sometimes a REL_OP is enough to specify a
non-anchor node - maybe you just want the head of another node
unconditionally, for example.
This change just sets RIGHT_ATTRS to {} if not present. Alternatively
changing E100 to state RIGHT_ATTRS is required could also be reasonable.
* Fix test
This test was written on the assumption that if `RIGHT_ATTRS` isn't
present an error will be raised. Since the proposed changes make it so
an error won't be raised this is no longer necessary.
* Revert test, update error message
Error message now lists missing keys, and RIGHT_ATTRS is required.
* Use list of required keys in error message
Also removes unused key param arg.
* ✨ implement noun_chunks for dutch language
* copy/paste FR and SV syntax iterators to accomodate UD tags
* added tests with dutch text
* signed contributor agreement
* 🐛 fix noun chunks generator
* built from scratch
* define noun chunk as a single Noun-Phrase
* includes some corner cases debugging (incorrect POS tagging)
* test with provided annotated sample (POS, DEP)
* ✅ fix failing test
* CI pipeline did not like the added sample file
* add the sample as a pytest fixture
* Update spacy/lang/nl/syntax_iterators.py
* Update spacy/lang/nl/syntax_iterators.py
Code readability
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/tests/lang/nl/test_noun_chunks.py
correct comment
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* finalize code
* change "if next_word" into "if next_word is not None"
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Raise an error for textcat with <2 labels
Raise an error if initializing a `textcat` component without at least
two labels.
* Add similar note to docs
* Update positive_label description in API docs
* Use minor version for compatibility check
* Use minor version of compatibility table
* Soften warning message about incompatible models
* Add test for presence of current version in compatibility table
* Add test for download compatibility table
* Use minor version of lower pin in error message if possible
* Fall back to spacy_git_version if available
* Fix unknown version string
* Support a cfg field in transition system
* Make NER 'has gold' check use right alignment for span
* Pass 'negative_samples_key' property into NER transition system
* Add field for negative samples to NER transition system
* Check neg_key in NER has_gold
* Support negative examples in NER oracle
* Test for negative examples in NER
* Fix name of config variable in NER
* Remove vestiges of old-style partial annotation
* Remove obsolete tests
* Add comment noting lack of support for negative samples in parser
* Additions to "neg examples" PR (#8201)
* add custom error and test for deprecated format
* add test for unlearning an entity
* add break also for Begin's cost
* add negative_samples_key property on Parser
* rename
* extend docs & fix some older docs issues
* add subclass constructors, clean up tests, fix docs
* add flaky test with ValueError if gold parse was not found
* remove ValueError if n_gold == 0
* fix docstring
* Hack in environment variables to try out training
* Remove hack
* Remove NER hack, and support 'negative O' samples
* Fix O oracle
* Fix transition parser
* Remove 'not O' from oracle
* Fix NER oracle
* check for spans in both gold.ents and gold.spans and raise if so, to prevent memory access violation
* use set instead of list in consistency check
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fill in deps if not provided with heads
Before this change, if heads were passed without deps they would be
silently ignored, which could be confusing. See #8334.
* Use "dep" instead of a blank string
This is the customary placeholder dep. It might be better to show an
error here instead though.
* Throw error on heads without deps
* Add a test
* Fix tests
* Formatting
* Fix all tests
* Fix a test I missed
* Revise error message
* Clean up whitespace
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Show warning if entity_ruler runs without patterns
* Show warning if matcher runs without patterns
* fix wording
* unit test for warning once (WIP)
* warn W036 only once
* cleanup
* create filter_warning helper
* Show warning if entity_ruler runs without patterns
* Show warning if matcher runs without patterns
* fix wording
* unit test for warning once (WIP)
* warn W036 only once
* cleanup
* create filter_warning helper
* custom warning if the doc_bin is too large
* cleanup
* Update spacy/errors.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* fix numbering
* fixing numbering once more
* fixing this seems to be pretty hard
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Handle errors while multiprocessing
Handle errors while multiprocessing without hanging.
* Return the traceback for errors raised while processing a batch, which
can be handled by the top-level error handler
* Allow for shortened batches due to custom error handlers that ignore
errors and skip documents
* Define custom components at a higher level
* Also move up custom error handler
* Use simpler component for test
* Switch error type
* Adjust test
* Only call top-level error handler for exceptions
* Register custom test components within tests
Use global functions (so they can be pickled) but register the
components only within the individual tests.
* Add callback to copy vocab/tokenizer from model
Add callback `spacy.copy_from_base_model.v1` to copy the tokenizer
settings and/or vocab (including vectors) from a base model.
* Move spacy.copy_from_base_model.v1 to spacy.training.callbacks
* Add documentation
* Modify to specify model as tokenizer and vocab params
* Terminology: deprecated vs obsolete
Typically, deprecated is used for functionality that is bound to become unavailable but that can still be used. Obsolete is used for features that have been removed. In E941, I think what is meant is "obsolete" since loading a model by a shortcut simply does not work anymore (and throws an error). This is different from downloading a model with a shortcut, which is deprecated but still works.
In light of this, perhaps all other error codes should be checked as well.
* clarify that the link command is removed and not just deprecated
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Merge data from `doc.spans` in `Doc.from_docs()`.
* Fix internal character offset set when merging empty docs (only
affects tokens and spans in `user_data` if an empty doc is in the list
of docs)
* Add util method for check
* Add new languages to list with lexeme norm tables
* Add check to all relevant components
* Add config details to warning message
Note that we're not actually inspecting the model config to see if
`NORM` is used as an attribute, so it may warn in cases where it's not
relevant.
* initialize NLP with train corpus
* add more pretraining tests
* more tests
* function to fetch tok2vec layer for pretraining
* clarify parameter name
* test different objectives
* formatting
* fix check for static vectors when using vectors objective
* clarify docs
* logger statement
* fix init_tok2vec and proc.initialize order
* test training after pretraining
* add init_config tests for pretraining
* pop pretraining block to avoid config validation errors
* custom errors
Now that the initialize step is fully implemented, the source of E923 is
typically missing or improperly converted/formatted data rather than a
bug in spaCy, so rephrase the error and message and remove the prompt to
open an issue.