mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			376 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			376 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: SentenceRecognizer
 | |
| tag: class
 | |
| source: spacy/pipeline/senter.pyx
 | |
| new: 3
 | |
| teaser: 'Pipeline component for sentence segmentation'
 | |
| api_base_class: /api/tagger
 | |
| api_string_name: senter
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| A trainable pipeline component for sentence segmentation. For a simpler,
 | |
| rule-based strategy, see the [`Sentencizer`](/api/sentencizer).
 | |
| 
 | |
| ## Config and implementation {#config}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
 | |
| > config = {"model": DEFAULT_SENTER_MODEL,}
 | |
| > nlp.add_pipe("senter", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting | Description                                                                                                                                                           |
 | |
| | ------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/senter.pyx
 | |
| ```
 | |
| 
 | |
| ## SentenceRecognizer.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| Initialize the sentence recognizer.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > senter = nlp.add_pipe("senter")
 | |
| >
 | |
| > # Construction via create_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_senter"}}
 | |
| > senter = nlp.add_pipe("senter", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import SentenceRecognizer
 | |
| > senter = SentenceRecognizer(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#add_pipe).
 | |
| 
 | |
| | Name    | Description                                                                                                          |
 | |
| | ------- | -------------------------------------------------------------------------------------------------------------------- |
 | |
| | `vocab` | The shared vocabulary. ~~Vocab~~                                                                                     |
 | |
| | `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
 | |
| | `name`  | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                  |
 | |
| 
 | |
| ## SentenceRecognizer.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/sentencerecognizer#call) and
 | |
| [`pipe`](/api/sentencerecognizer#pipe) delegate to the
 | |
| [`predict`](/api/sentencerecognizer#predict) and
 | |
| [`set_annotations`](/api/sentencerecognizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > # This usually happens under the hood
 | |
| > processed = senter(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## SentenceRecognizer.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/sentencerecognizer#call)
 | |
| and [`pipe`](/api/sentencerecognizer#pipe) delegate to the
 | |
| [`predict`](/api/sentencerecognizer#predict) and
 | |
| [`set_annotations`](/api/sentencerecognizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > for doc in senter.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## SentenceRecognizer.initialize {#initialize tag="method"}
 | |
| 
 | |
| Initialize the component for training. `get_examples` should be a function that
 | |
| returns an iterable of [`Example`](/api/example) objects. The data examples are
 | |
| used to **initialize the model** of the component and can either be the full
 | |
| training data or a representative sample. Initialization includes validating the
 | |
| network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter.initialize(lambda: [], nlp=nlp)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                           |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
 | |
| | _keyword-only_ |                                                                                                                                       |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                  |
 | |
| 
 | |
| ## SentenceRecognizer.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
 | |
| modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > scores = senter.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                 |
 | |
| | ----------- | ------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | |
| | **RETURNS** | The model's prediction for each document.   |
 | |
| 
 | |
| ## SentenceRecognizer.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > scores = senter.predict([doc1, doc2])
 | |
| > senter.set_annotations([doc1, doc2], scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                                  |
 | |
| | -------- | ------------------------------------------------------------ |
 | |
| | `docs`   | The documents to modify. ~~Iterable[Doc]~~                   |
 | |
| | `scores` | The scores to set, produced by `SentenceRecognizer.predict`. |
 | |
| 
 | |
| ## SentenceRecognizer.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects containing the
 | |
| predictions and gold-standard annotations, and update the component's model.
 | |
| Delegates to [`predict`](/api/sentencerecognizer#predict) and
 | |
| [`get_loss`](/api/sentencerecognizer#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = senter.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## SentenceRecognizer.rehearse {#rehearse tag="method,experimental" new="3"}
 | |
| 
 | |
| Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
 | |
| current model to make predictions similar to an initial model to try to address
 | |
| the "catastrophic forgetting" problem. This feature is experimental.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > optimizer = nlp.resume_training()
 | |
| > losses = senter.rehearse(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## SentenceRecognizer.get_loss {#get_loss tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > scores = senter.predict([eg.predicted for eg in examples])
 | |
| > loss, d_loss = senter.get_loss(examples, scores)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                 |
 | |
| | ----------- | --------------------------------------------------------------------------- |
 | |
| | `examples`  | The batch of examples. ~~Iterable[Example]~~                                |
 | |
| | `scores`    | Scores representing the model's predictions.                                |
 | |
| | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
 | |
| 
 | |
| ## SentenceRecognizer.score {#score tag="method" new="3"}
 | |
| 
 | |
| Score a batch of examples.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > scores = senter.score(examples)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                                                                                               |
 | |
| | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `examples`  | The examples to score. ~~Iterable[Example]~~                                                                                                              |
 | |
| | **RETURNS** | The scores, produced by [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"`, `"tag"` and `"lemma"`. ~~Dict[str, float]~~ |
 | |
| 
 | |
| ## SentenceRecognizer.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > optimizer = senter.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## SentenceRecognizer.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > with senter.use_params(optimizer.averages):
 | |
| >     senter.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## SentenceRecognizer.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter.to_disk("/path/to/senter")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## SentenceRecognizer.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter.from_disk("/path/to/senter")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `SentenceRecognizer` object. ~~SentenceRecognizer~~                                |
 | |
| 
 | |
| ## SentenceRecognizer.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter_bytes = senter.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `SentenceRecognizer` object. ~~bytes~~                           |
 | |
| 
 | |
| ## SentenceRecognizer.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > senter_bytes = senter.to_bytes()
 | |
| > senter = nlp.add_pipe("senter")
 | |
| > senter.from_bytes(senter_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `SentenceRecognizer` object. ~~SentenceRecognizer~~                                     |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = senter.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |