mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			198 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			198 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Sentencizer
 | ||
| tag: class
 | ||
| source: spacy/pipeline/sentencizer.pyx
 | ||
| teaser: 'Pipeline component for rule-based sentence boundary detection'
 | ||
| api_string_name: sentencizer
 | ||
| api_trainable: false
 | ||
| ---
 | ||
| 
 | ||
| A simple pipeline component to allow custom sentence boundary detection logic
 | ||
| that doesn't require the dependency parse. By default, sentence segmentation is
 | ||
| performed by the [`DependencyParser`](/api/dependencyparser), so the
 | ||
| `Sentencizer` lets you implement a simpler, rule-based strategy that doesn't
 | ||
| require a statistical model to be loaded.
 | ||
| 
 | ||
| ## Config and implementation {#config}
 | ||
| 
 | ||
| The default config is defined by the pipeline component factory and describes
 | ||
| how the component should be configured. You can override its settings via the
 | ||
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | ||
| [`config.cfg` for training](/usage/training#config).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > config = {"punct_chars": None}
 | ||
| > nlp.add_pipe("sentencizer", config=config)
 | ||
| > ```
 | ||
| 
 | ||
| | Setting       | Description                                                                                                                                            |
 | ||
| | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | ------ |
 | ||
| | `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults if not set. Defaults to `None`. ~~Optional[List[str]]~~ | `None` |
 | ||
| 
 | ||
| ```python
 | ||
| %%GITHUB_SPACY/spacy/pipeline/sentencizer.pyx
 | ||
| ```
 | ||
| 
 | ||
| ## Sentencizer.\_\_init\_\_ {#init tag="method"}
 | ||
| 
 | ||
| Initialize the sentencizer.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > # Construction via add_pipe
 | ||
| > sentencizer = nlp.add_pipe("sentencizer")
 | ||
| >
 | ||
| > # Construction from class
 | ||
| > from spacy.pipeline import Sentencizer
 | ||
| > sentencizer = Sentencizer()
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                             |
 | ||
| | -------------- | ----------------------------------------------------------------------------------------------------------------------- |
 | ||
| | _keyword-only_ |                                                                                                                         |
 | ||
| | `punct_chars`  | Optional custom list of punctuation characters that mark sentence ends. See below for defaults. ~~Optional[List[str]]~~ |
 | ||
| 
 | ||
| ```python
 | ||
| ### punct_chars defaults
 | ||
| ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', '।', '॥', '၊', '။', '።',
 | ||
|  '፧', '፨', '᙮', '᜵', '᜶', '᠃', '᠉', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫',
 | ||
|  '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉',
 | ||
|  '⸮', '⸼', '꓿', '꘎', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈',
 | ||
|  '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '!', '.', '?',
 | ||
|  '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅',
 | ||
|  '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂',
 | ||
|  '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓',
 | ||
|  '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛',
 | ||
|  '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。']
 | ||
| ```
 | ||
| 
 | ||
| ## Sentencizer.\_\_call\_\_ {#call tag="method"}
 | ||
| 
 | ||
| Apply the sentencizer on a `Doc`. Typically, this happens automatically after
 | ||
| the component has been added to the pipeline using
 | ||
| [`nlp.add_pipe`](/api/language#add_pipe).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.lang.en import English
 | ||
| >
 | ||
| > nlp = English()
 | ||
| > nlp.add_pipe("sentencizer")
 | ||
| > doc = nlp("This is a sentence. This is another sentence.")
 | ||
| > assert len(list(doc.sents)) == 2
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                          |
 | ||
| | ----------- | -------------------------------------------------------------------- |
 | ||
| | `doc`       | The `Doc` object to process, e.g. the `Doc` in the pipeline. ~~Doc~~ |
 | ||
| | **RETURNS** | The modified `Doc` with added sentence boundaries. ~~Doc~~           |
 | ||
| 
 | ||
| ## Sentencizer.pipe {#pipe tag="method"}
 | ||
| 
 | ||
| Apply the pipe to a stream of documents. This usually happens under the hood
 | ||
| when the `nlp` object is called on a text and all pipeline components are
 | ||
| applied to the `Doc` in order.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > sentencizer = nlp.add_pipe("sentencizer")
 | ||
| > for doc in sentencizer.pipe(docs, batch_size=50):
 | ||
| >     pass
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                   |
 | ||
| | -------------- | ------------------------------------------------------------- |
 | ||
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | ||
| | _keyword-only_ |                                                               |
 | ||
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | ||
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | ||
| 
 | ||
| ## Sentencizer.score {#score tag="method" new="3"}
 | ||
| 
 | ||
| Score a batch of examples.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > scores = sentencizer.score(examples)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                                                                           |
 | ||
| | ----------- | --------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `examples`  | The examples to score. ~~Iterable[Example]~~                                                                          |
 | ||
| | **RETURNS** | The scores, produced by [`Scorer.score_spans`](/api/scorer#score_spans). ~~Dict[str, Union[float, Dict[str, float]]~~ |
 | ||
| 
 | ||
| ## Sentencizer.to_disk {#to_disk tag="method"}
 | ||
| 
 | ||
| Save the sentencizer settings (punctuation characters) to a directory. Will
 | ||
| create a file `sentencizer.json`. This also happens automatically when you save
 | ||
| an `nlp` object with a sentencizer added to its pipeline.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > config = {"punct_chars": [".", "?", "!", "。"]}
 | ||
| > sentencizer = nlp.add_pipe("sentencizer", config=config)
 | ||
| > sentencizer.to_disk("/path/to/sentencizer.json")
 | ||
| > ```
 | ||
| 
 | ||
| | Name   | Description                                                                                                                                |
 | ||
| | ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `path` | A path to a JSON file, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| 
 | ||
| ## Sentencizer.from_disk {#from_disk tag="method"}
 | ||
| 
 | ||
| Load the sentencizer settings from a file. Expects a JSON file. This also
 | ||
| happens automatically when you load an `nlp` object or model with a sentencizer
 | ||
| added to its pipeline.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > sentencizer = nlp.add_pipe("sentencizer")
 | ||
| > sentencizer.from_disk("/path/to/sentencizer.json")
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                                                     |
 | ||
| | ----------- | ----------------------------------------------------------------------------------------------- |
 | ||
| | `path`      | A path to a JSON file. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| | **RETURNS** | The modified `Sentencizer` object. ~~Sentencizer~~                                              |
 | ||
| 
 | ||
| ## Sentencizer.to_bytes {#to_bytes tag="method"}
 | ||
| 
 | ||
| Serialize the sentencizer settings to a bytestring.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > config = {"punct_chars": [".", "?", "!", "。"]}
 | ||
| > sentencizer = nlp.add_pipe("sentencizer", config=config)
 | ||
| > sentencizer_bytes = sentencizer.to_bytes()
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                    |
 | ||
| | ----------- | ------------------------------ |
 | ||
| | **RETURNS** | The serialized data. ~~bytes~~ |
 | ||
| 
 | ||
| ## Sentencizer.from_bytes {#from_bytes tag="method"}
 | ||
| 
 | ||
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > sentencizer_bytes = sentencizer.to_bytes()
 | ||
| > sentencizer = nlp.add_pipe("sentencizer")
 | ||
| > sentencizer.from_bytes(sentencizer_bytes)
 | ||
| > ```
 | ||
| 
 | ||
| | Name         | Description                                        |
 | ||
| | ------------ | -------------------------------------------------- |
 | ||
| | `bytes_data` | The bytestring to load. ~~bytes~~                  |
 | ||
| | **RETURNS**  | The modified `Sentencizer` object. ~~Sentencizer~~ |
 |