mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			328 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Tok2Vec
 | |
| source: spacy/pipeline/tok2vec.py
 | |
| new: 3
 | |
| teaser: null
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: tok2vec
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| Apply a "token-to-vector" model and set its outputs in the `Doc.tensor`
 | |
| attribute. This is mostly useful to **share a single subnetwork** between
 | |
| multiple components, e.g. to have one embedding and CNN network shared between a
 | |
| [`DependencyParser`](/api/dependencyparser), [`Tagger`](/api/tagger) and
 | |
| [`EntityRecognizer`](/api/entityrecognizer).
 | |
| 
 | |
| In order to use the `Tok2Vec` predictions, subsequent components should use the
 | |
| [Tok2VecListener](/api/architectures#Tok2VecListener) layer as the `tok2vec`
 | |
| subnetwork of their model. This layer will read data from the `doc.tensor`
 | |
| attribute during prediction. During training, the `Tok2Vec` component will save
 | |
| its prediction and backprop callback for each batch, so that the subsequent
 | |
| components can backpropagate to the shared weights. This implementation is used
 | |
| because it allows us to avoid relying on object identity within the models to
 | |
| achieve the parameter sharing.
 | |
| 
 | |
| ## Config and implementation {#config}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | |
| > config = {"model": DEFAULT_TOK2VEC_MODEL}
 | |
| > nlp.add_pipe("tok2vec", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting | Description                                                                                                        |
 | |
| | ------- | ------------------------------------------------------------------------------------------------------------------ |
 | |
| | `model` | The model to use. Defaults to [HashEmbedCNN](/api/architectures#HashEmbedCNN). ~~Model[List[Doc], List[Floats2d]~~ |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/tok2vec.py
 | |
| ```
 | |
| 
 | |
| ## Tok2Vec.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| >
 | |
| > # Construction via add_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_tok2vec"}}
 | |
| > parser = nlp.add_pipe("tok2vec", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import Tok2Vec
 | |
| > tok2vec = Tok2Vec(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#create_pipe).
 | |
| 
 | |
| | Name    | Description                                                                                                               |
 | |
| | ------- | ------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `vocab` | The shared vocabulary. ~~Vocab~~                                                                                          |
 | |
| | `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]~~ |
 | |
| | `name`  | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                       |
 | |
| 
 | |
| ## Tok2Vec.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document and add context-sensitive embeddings to the
 | |
| `Doc.tensor` attribute, allowing them to be used as features by downstream
 | |
| components. The document is modified in place, and returned. This usually
 | |
| happens under the hood when the `nlp` object is called on a text and all
 | |
| pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/tok2vec#call) and [`pipe`](/api/tok2vec#pipe) delegate to the
 | |
| [`predict`](/api/tok2vec#predict) and
 | |
| [`set_annotations`](/api/tok2vec#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > # This usually happens under the hood
 | |
| > processed = tok2vec(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## Tok2Vec.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/tok2vec#call) and
 | |
| [`pipe`](/api/tok2vec#pipe) delegate to the [`predict`](/api/tok2vec#predict)
 | |
| and [`set_annotations`](/api/tok2vec#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > for doc in tok2vec.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## Tok2Vec.initialize {#initialize tag="method"}
 | |
| 
 | |
| Initialize the component for training and return an
 | |
| [`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
 | |
| function that returns an iterable of [`Example`](/api/example) objects. The data
 | |
| examples are used to **initialize the model** of the component and can either be
 | |
| the full training data or a representative sample. Initialization includes
 | |
| validating the network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec.initialize(lambda: [], nlp=nlp)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                           |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
 | |
| | _keyword-only_ |                                                                                                                                       |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                  |
 | |
| 
 | |
| ## Tok2Vec.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects without
 | |
| modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > scores = tok2vec.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                 |
 | |
| | ----------- | ------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | |
| | **RETURNS** | The model's prediction for each document.   |
 | |
| 
 | |
| ## Tok2Vec.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > scores = tok2vec.predict(docs)
 | |
| > tok2vec.set_annotations(docs, scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                       |
 | |
| | -------- | ------------------------------------------------- |
 | |
| | `docs`   | The documents to modify. ~~Iterable[Doc]~~        |
 | |
| | `scores` | The scores to set, produced by `Tok2Vec.predict`. |
 | |
| 
 | |
| ## Tok2Vec.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects containing the
 | |
| predictions and gold-standard annotations, and update the component's model.
 | |
| Delegates to [`predict`](/api/tok2vec#predict).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = tok2vec.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## Tok2Vec.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > optimizer = tok2vec.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## Tok2Vec.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > with tok2vec.use_params(optimizer.averages):
 | |
| >     tok2vec.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## Tok2Vec.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec.to_disk("/path/to/tok2vec")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## Tok2Vec.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec.from_disk("/path/to/tok2vec")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `Tok2Vec` object. ~~Tok2Vec~~                                                      |
 | |
| 
 | |
| ## Tok2Vec.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec_bytes = tok2vec.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `Tok2Vec` object. ~~bytes~~                                      |
 | |
| 
 | |
| ## Tok2Vec.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > tok2vec_bytes = tok2vec.to_bytes()
 | |
| > tok2vec = nlp.add_pipe("tok2vec")
 | |
| > tok2vec.from_bytes(tok2vec_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `Tok2Vec` object. ~~Tok2Vec~~                                                           |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = tok2vec.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |