spaCy/spacy/pipeline/textcat/pure_logistic_textcat.ipynb
2024-10-10 00:27:22 -07:00

130 lines
4.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'cells': [{'cell_type': 'markdown',\n",
" 'metadata': {},\n",
" 'source': ['# Pure Logistic Regression Text Categorizer\\n',\n",
" 'This tutorial demonstrates how to use the custom logistic regression text categorizer.']},\n",
" {'cell_type': 'code',\n",
" 'execution_count': None,\n",
" 'metadata': {},\n",
" 'source': ['import spacy\\n',\n",
" 'from spacy.training import Example\\n',\n",
" '\\n',\n",
" '# Load spaCy model\\n',\n",
" 'nlp = spacy.load(\"en_core_web_lg\")\\n',\n",
" 'nlp.add_pipe(\"pure_logistic_textcat\")\\n',\n",
" '\\n',\n",
" '# Example training data\\n',\n",
" 'TRAIN_DATA = [\\n',\n",
" ' (\"This is amazing!\", {\"cats\": {\"positive\": 1.0, \"negative\": 0.0}}),\\n',\n",
" ' (\"This is terrible!\", {\"cats\": {\"positive\": 0.0, \"negative\": 1.0}})\\n',\n",
" ']\\n',\n",
" '\\n',\n",
" '# Create training examples\\n',\n",
" 'examples = []\\n',\n",
" 'for text, annotations in TRAIN_DATA:\\n',\n",
" ' doc = nlp.make_doc(text)\\n',\n",
" ' example = Example.from_dict(doc, annotations)\\n',\n",
" ' examples.append(example)\\n',\n",
" '\\n',\n",
" '# Train the model\\n',\n",
" 'textcat = nlp.get_pipe(\"pure_logistic_textcat\")\\n',\n",
" 'losses = textcat.update(examples)\\n',\n",
" 'print(f\"Losses: {losses}\")\\n',\n",
" '\\n',\n",
" '# Test the model\\n',\n",
" 'test_text = \"This product is fantastic!\"\\n',\n",
" 'doc = nlp(test_text)\\n',\n",
" 'print(f\"\\\\nText: {test_text}\")\\n',\n",
" 'print(f\"Predictions: {doc.cats}\")']}]}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{\n",
" \"cells\": [\n",
" {\n",
" \"cell_type\": \"markdown\",\n",
" \"metadata\": {},\n",
" \"source\": [\n",
" \"# Pure Logistic Regression Text Categorizer\\n\",\n",
" \"This tutorial demonstrates how to use the custom logistic regression text categorizer.\"\n",
" ]\n",
" },\n",
" {\n",
" \"cell_type\": \"code\",\n",
" \"execution_count\": None,\n",
" \"metadata\": {},\n",
" \"source\": [\n",
" \"import spacy\\n\",\n",
" \"from spacy.training import Example\\n\",\n",
" \"\\n\",\n",
" \"# Load spaCy model\\n\",\n",
" \"nlp = spacy.load(\\\"en_core_web_lg\\\")\\n\",\n",
" \"nlp.add_pipe(\\\"pure_logistic_textcat\\\")\\n\",\n",
" \"\\n\",\n",
" \"# Example training data\\n\",\n",
" \"TRAIN_DATA = [\\n\",\n",
" \" (\\\"This is amazing!\\\", {\\\"cats\\\": {\\\"positive\\\": 1.0, \\\"negative\\\": 0.0}}),\\n\",\n",
" \" (\\\"This is terrible!\\\", {\\\"cats\\\": {\\\"positive\\\": 0.0, \\\"negative\\\": 1.0}})\\n\",\n",
" \"]\\n\",\n",
" \"\\n\",\n",
" \"# Create training examples\\n\",\n",
" \"examples = []\\n\",\n",
" \"for text, annotations in TRAIN_DATA:\\n\",\n",
" \" doc = nlp.make_doc(text)\\n\",\n",
" \" example = Example.from_dict(doc, annotations)\\n\",\n",
" \" examples.append(example)\\n\",\n",
" \"\\n\",\n",
" \"# Train the model\\n\",\n",
" \"textcat = nlp.get_pipe(\\\"pure_logistic_textcat\\\")\\n\",\n",
" \"losses = textcat.update(examples)\\n\",\n",
" \"print(f\\\"Losses: {losses}\\\")\\n\",\n",
" \"\\n\",\n",
" \"# Test the model\\n\",\n",
" \"test_text = \\\"This product is fantastic!\\\"\\n\",\n",
" \"doc = nlp(test_text)\\n\",\n",
" \"print(f\\\"\\\\nText: {test_text}\\\")\\n\",\n",
" \"print(f\\\"Predictions: {doc.cats}\\\")\"\n",
" ]\n",
" }\n",
" ]\n",
"}"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}