mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 03:16:31 +03:00
e962784531
* Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
104 lines
3.5 KiB
Markdown
104 lines
3.5 KiB
Markdown
---
|
|
title: Morphology
|
|
tag: class
|
|
source: spacy/morphology.pyx
|
|
---
|
|
|
|
Store the possible morphological analyses for a language, and index them by
|
|
hash. To save space on each token, tokens only know the hash of their
|
|
morphological analysis, so queries of morphological attributes are delegated to
|
|
this class.
|
|
|
|
## Morphology.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Create a Morphology object.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.morphology import Morphology
|
|
>
|
|
> morphology = Morphology(strings)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| --------- | ------------- | ----------------- |
|
|
| `strings` | `StringStore` | The string store. |
|
|
|
|
## Morphology.add {#add tag="method"}
|
|
|
|
Insert a morphological analysis in the morphology table, if not already present.
|
|
The morphological analysis may be provided in the UD FEATS format as a string or
|
|
in the tag map dictionary format. Returns the hash of the new analysis.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> feats = "Feat1=Val1|Feat2=Val2"
|
|
> hash = nlp.vocab.morphology.add(feats)
|
|
> assert hash == nlp.vocab.strings[feats]
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ---------- | ------------------ | --------------------------- |
|
|
| `features` | `Union[Dict, str]` | The morphological features. |
|
|
|
|
## Morphology.get {#get tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> feats = "Feat1=Val1|Feat2=Val2"
|
|
> hash = nlp.vocab.morphology.add(feats)
|
|
> assert nlp.vocab.morphology.get(hash) == feats
|
|
> ```
|
|
|
|
Get the FEATS string for the hash of the morphological analysis.
|
|
|
|
| Name | Type | Description |
|
|
| ------- | ---- | --------------------------------------- |
|
|
| `morph` | int | The hash of the morphological analysis. |
|
|
|
|
## Morphology.feats_to_dict {#feats_to_dict tag="staticmethod"}
|
|
|
|
Convert a string FEATS representation to a dictionary of features and values in
|
|
the same format as the tag map.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.morphology import Morphology
|
|
> d = Morphology.feats_to_dict("Feat1=Val1|Feat2=Val2")
|
|
> assert d == {"Feat1": "Val1", "Feat2": "Val2"}
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ---- | ------------------------------------------------------------------ |
|
|
| `feats` | str | The morphological features in Universal Dependencies FEATS format. |
|
|
| **RETURNS** | dict | The morphological features as a dictionary. |
|
|
|
|
## Morphology.dict_to_feats {#dict_to_feats tag="staticmethod"}
|
|
|
|
Convert a dictionary of features and values to a string FEATS representation.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.morphology import Morphology
|
|
> f = Morphology.dict_to_feats({"Feat1": "Val1", "Feat2": "Val2"})
|
|
> assert f == "Feat1=Val1|Feat2=Val2"
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------ | ----------------- | --------------------------------------------------------------------- |
|
|
| `feats_dict` | `Dict[str, Dict]` | The morphological features as a dictionary. |
|
|
| **RETURNS** | str | The morphological features as in Universal Dependencies FEATS format. |
|
|
|
|
## Attributes {#attributes}
|
|
|
|
| Name | Type | Description |
|
|
| ------------- | ----- | -------------------------------------------- |
|
|
| `FEATURE_SEP` | `str` | The FEATS feature separator. Default is `|`. |
|
|
| `FIELD_SEP` | `str` | The FEATS field separator. Default is `=`. |
|
|
| `VALUE_SEP` | `str` | The FEATS value separator. Default is `,`. |
|