mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-06 07:16:29 +03:00
262 lines
14 KiB
Markdown
262 lines
14 KiB
Markdown
---
|
|
title: AttributeRuler
|
|
tag: class
|
|
source: spacy/pipeline/attributeruler.py
|
|
new: 3
|
|
teaser: 'Pipeline component for rule-based token attribute assignment'
|
|
api_string_name: attribute_ruler
|
|
api_trainable: false
|
|
---
|
|
|
|
The attribute ruler lets you set token attributes for tokens identified by
|
|
[`Matcher` patterns](/usage/rule-based-matching#matcher). The attribute ruler is
|
|
typically used to handle exceptions for token attributes and to map values
|
|
between attributes such as mapping fine-grained POS tags to coarse-grained POS
|
|
tags. See the [usage guide](/usage/linguistic-features/#mappings-exceptions) for
|
|
examples.
|
|
|
|
## Config and implementation {#config}
|
|
|
|
The default config is defined by the pipeline component factory and describes
|
|
how the component should be configured. You can override its settings via the
|
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
|
[`config.cfg` for training](/usage/training#config).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> config = {
|
|
> "pattern_dicts": None,
|
|
> "validate": True,
|
|
> }
|
|
> nlp.add_pipe("attribute_ruler", config=config)
|
|
> ```
|
|
|
|
| Setting | Description |
|
|
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `pattern_dicts` | A list of pattern dicts with the keys as the arguments to [`AttributeRuler.add`](/api/attributeruler#add) (`patterns`/`attrs`/`index`) to add as patterns. Defaults to `None`. ~~Optional[Iterable[Dict[str, Union[List[dict], dict, int]]]]~~ |
|
|
| `validate` | Whether patterns should be validated (passed to the `Matcher`). Defaults to `False`. ~~bool~~ |
|
|
|
|
```python
|
|
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/attributeruler.py
|
|
```
|
|
|
|
## AttributeRuler.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Initialize the attribute ruler. If pattern dicts are supplied here, they need to
|
|
be a list of dictionaries with `"patterns"`, `"attrs"`, and optional `"index"`
|
|
keys, e.g.:
|
|
|
|
```python
|
|
pattern_dicts = [
|
|
{"patterns": [[{"TAG": "VB"}]], "attrs": {"POS": "VERB"}},
|
|
{"patterns": [[{"LOWER": "an"}]], "attrs": {"LEMMA": "a"}},
|
|
]
|
|
```
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via add_pipe
|
|
> attribute_ruler = nlp.add_pipe("attribute_ruler")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | The shared vocabulary to pass to the matcher. ~~Vocab~~ |
|
|
| `name` | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. ~~str~~ |
|
|
| _keyword-only_ | |
|
|
| `pattern_dicts` | Optional patterns to load in on initialization. Defaults to `None`. ~~Optional[Iterable[Dict[str, Union[List[dict], dict, int]]]]~~ |
|
|
| `validate` | Whether patterns should be validated (passed to the [`Matcher`](/api/matcher#init)). Defaults to `False`. ~~bool~~ |
|
|
|
|
## AttributeRuler.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Apply the attribute ruler to a Doc, setting token attributes for tokens matched
|
|
by the provided patterns.
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------- |
|
|
| `doc` | The document to process. ~~Doc~~ |
|
|
| **RETURNS** | The processed document. ~~Doc~~ |
|
|
|
|
## AttributeRuler.add {#add tag="method"}
|
|
|
|
Add patterns to the attribute ruler. The patterns are a list of `Matcher`
|
|
patterns and the attributes are a dict of attributes to set on the matched
|
|
token. If the pattern matches a span of more than one token, the `index` can be
|
|
used to set the attributes for the token at that index in the span. The `index`
|
|
may be negative to index from the end of the span.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> attribute_ruler = nlp.add_pipe("attribute_ruler")
|
|
> patterns = [[{"TAG": "VB"}]]
|
|
> attrs = {"POS": "VERB"}
|
|
> attribute_ruler.add(patterns=patterns, attrs=attrs)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------- | --------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `patterns` | The `Matcher` patterns to add. ~~Iterable[List[Dict[Union[int, str], Any]]]~~ |
|
|
| `attrs` | The attributes to assign to the target token in the matched span. ~~Dict[str, Any]~~ |
|
|
| `index` | The index of the token in the matched span to modify. May be negative to index from the end of the span. Defaults to `0`. ~~int~~ |
|
|
|
|
## AttributeRuler.add_patterns {#add_patterns tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> attribute_ruler = nlp.add_pipe("attribute_ruler")
|
|
> pattern_dicts = [
|
|
> {
|
|
> "patterns": [[{"TAG": "VB"}]],
|
|
> "attrs": {"POS": "VERB"}
|
|
> },
|
|
> {
|
|
> "patterns": [[{"LOWER": "two"}, {"LOWER": "apples"}]],
|
|
> "attrs": {"LEMMA": "apple"},
|
|
> "index": -1
|
|
> },
|
|
> ]
|
|
> attribute_ruler.add_patterns(pattern_dicts)
|
|
> ```
|
|
|
|
Add patterns from a list of pattern dicts with the keys as the arguments to
|
|
[`AttributeRuler.add`](/api/attributeruler#add).
|
|
|
|
| Name | Description |
|
|
| --------------- | -------------------------------------------------------------------------- |
|
|
| `pattern_dicts` | The patterns to add. ~~Iterable[Dict[str, Union[List[dict], dict, int]]]~~ |
|
|
|
|
## AttributeRuler.patterns {#patterns tag="property"}
|
|
|
|
Get all patterns that have been added to the attribute ruler in the
|
|
`patterns_dict` format accepted by
|
|
[`AttributeRuler.add_patterns`](/api/attributeruler#add_patterns).
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------------------------------------------------------------------- |
|
|
| **RETURNS** | The patterns added to the attribute ruler. ~~List[Dict[str, Union[List[dict], dict, int]]]~~ |
|
|
|
|
## AttributeRuler.score {#score tag="method" new="3"}
|
|
|
|
Score a batch of examples.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = attribute_ruler.score(examples)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The examples to score. ~~Iterable[Example]~~ |
|
|
| **RETURNS** | The scores, produced by [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"tag"`, `"pos"`, `"morph"` and `"lemma"` if present in any of the target token attributes. ~~Dict[str, float]~~ |
|
|
|
|
## AttributeRuler.load_from_tag_map {#load_from_tag_map tag="method"}
|
|
|
|
Load attribute ruler patterns from a tag map.
|
|
|
|
| Name | Description |
|
|
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `tag_map` | The tag map that maps fine-grained tags to coarse-grained tags and morphological features. ~~Dict[str, Dict[Union[int, str], Union[int, str]]]~~ |
|
|
|
|
## AttributeRuler.load_from_morph_rules {#load_from_morph_rules tag="method"}
|
|
|
|
Load attribute ruler patterns from morph rules.
|
|
|
|
| Name | Description |
|
|
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `morph_rules` | The morph rules that map token text and fine-grained tags to coarse-grained tags, lemmas and morphological features. ~~Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]]~~ |
|
|
|
|
## AttributeRuler.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> attribute_ruler = nlp.add_pipe("attribute_ruler")
|
|
> attribute_ruler.to_disk("/path/to/attribute_ruler")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
|
|
## AttributeRuler.from_disk {#from_disk tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> attribute_ruler = nlp.add_pipe("attribute_ruler")
|
|
> attribute_ruler.from_disk("/path/to/attribute_ruler")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ----------------------------------------------------------------------------------------------- |
|
|
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The modified `AttributeRuler` object. ~~AttributeRuler~~ |
|
|
|
|
## AttributeRuler.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> attribute_ruler = nlp.add_pipe("attribute_ruler")
|
|
> attribute_ruler_bytes = attribute_ruler.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring.
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The serialized form of the `AttributeRuler` object. ~~bytes~~ |
|
|
|
|
## AttributeRuler.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> attribute_ruler_bytes = attribute_ruler.to_bytes()
|
|
> attribute_ruler = nlp.add_pipe("attribute_ruler")
|
|
> attribute_ruler.from_bytes(attribute_ruler_bytes)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| `bytes_data` | The data to load from. ~~bytes~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The `AttributeRuler` object. ~~AttributeRuler~~ |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = attribute_ruler.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------- | -------------------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `patterns` | The Matcher patterns. You usually don't want to exclude this. |
|
|
| `attrs` | The attributes to set. You usually don't want to exclude this. |
|
|
| `indices` | The token indices. You usually don't want to exclude this. |
|