mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 17:54:39 +03:00
e962784531
* Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
3.5 KiB
3.5 KiB
title | tag | source |
---|---|---|
Morphology | class | spacy/morphology.pyx |
Store the possible morphological analyses for a language, and index them by hash. To save space on each token, tokens only know the hash of their morphological analysis, so queries of morphological attributes are delegated to this class.
Morphology.__init__
Create a Morphology object.
Example
from spacy.morphology import Morphology morphology = Morphology(strings)
Name | Type | Description |
---|---|---|
strings |
StringStore |
The string store. |
Morphology.add
Insert a morphological analysis in the morphology table, if not already present. The morphological analysis may be provided in the UD FEATS format as a string or in the tag map dictionary format. Returns the hash of the new analysis.
Example
feats = "Feat1=Val1|Feat2=Val2" hash = nlp.vocab.morphology.add(feats) assert hash == nlp.vocab.strings[feats]
Name | Type | Description |
---|---|---|
features |
Union[Dict, str] |
The morphological features. |
Morphology.get
Example
feats = "Feat1=Val1|Feat2=Val2" hash = nlp.vocab.morphology.add(feats) assert nlp.vocab.morphology.get(hash) == feats
Get the FEATS string for the hash of the morphological analysis.
Name | Type | Description |
---|---|---|
morph |
int | The hash of the morphological analysis. |
Morphology.feats_to_dict
Convert a string FEATS representation to a dictionary of features and values in the same format as the tag map.
Example
from spacy.morphology import Morphology d = Morphology.feats_to_dict("Feat1=Val1|Feat2=Val2") assert d == {"Feat1": "Val1", "Feat2": "Val2"}
Name | Type | Description |
---|---|---|
feats |
str | The morphological features in Universal Dependencies FEATS format. |
RETURNS | dict | The morphological features as a dictionary. |
Morphology.dict_to_feats
Convert a dictionary of features and values to a string FEATS representation.
Example
from spacy.morphology import Morphology f = Morphology.dict_to_feats({"Feat1": "Val1", "Feat2": "Val2"}) assert f == "Feat1=Val1|Feat2=Val2"
Name | Type | Description |
---|---|---|
feats_dict |
Dict[str, Dict] |
The morphological features as a dictionary. |
RETURNS | str | The morphological features as in Universal Dependencies FEATS format. |
Attributes
Name | Type | Description |
---|---|---|
FEATURE_SEP |
str |
The FEATS feature separator. Default is ` |
FIELD_SEP |
str |
The FEATS field separator. Default is = . |
VALUE_SEP |
str |
The FEATS value separator. Default is , . |