* Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit6e7b958f70
. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit0bd5730d16
. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
27 KiB
title | tag | source | new | teaser | api_base_class | api_string_name | api_trainable |
---|---|---|---|---|---|---|---|
SpanCategorizer | class,experimental | spacy/pipeline/spancat.py | 3.1 | Pipeline component for labeling potentially overlapping spans of text | /api/pipe | spancat | true |
A span categorizer consists of two parts: a suggester function that proposes candidate spans, which may or may not overlap, and a labeler model that predicts zero or more labels for each candidate.
Predicted spans will be saved in a SpanGroup
on the doc.
Individual span scores can be found in spangroup.attrs["scores"]
.
Assigned Attributes
Predictions will be saved to Doc.spans[spans_key]
as a
SpanGroup
. The scores for the spans in the SpanGroup
will
be saved in SpanGroup.attrs["scores"]
.
spans_key
defaults to "sc"
, but can be passed as a parameter.
Location | Value |
---|---|
Doc.spans[spans_key] |
The annotated spans. |
Doc.spans[spans_key].attrs["scores"] |
The score for each span in the SpanGroup . |
Config and implementation
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
config
argument on nlp.add_pipe
or in your
config.cfg
for training. See the
model architectures documentation for details on the
architectures and their arguments and hyperparameters.
Example
from spacy.pipeline.spancat import DEFAULT_SPANCAT_MODEL config = { "threshold": 0.5, "spans_key": "labeled_spans", "max_positive": None, "model": DEFAULT_SPANCAT_MODEL, "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]}, } nlp.add_pipe("spancat", config=config)
Setting | Description |
---|---|
suggester |
A function that suggests spans. Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to ngram_suggester . |
model |
A model instance that is given a a list of documents and (start, end) indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to SpanCategorizer. |
spans_key |
Key of the Doc.spans dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to "sc" . |
threshold |
Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to 0.5 . |
max_positive |
Maximum number of labels to consider positive per span. Defaults to None , indicating no limit. |
scorer |
The scoring method. Defaults to Scorer.score_spans for Doc.spans[spans_key] with overlapping spans allowed. |
save_activations 4.0 |
Save activations in Doc when annotating. Saved activations are "indices" and "scores" . |
%%GITHUB_SPACY/spacy/pipeline/spancat.py
SpanCategorizer.__init__
Example
# Construction via add_pipe with default model spancat = nlp.add_pipe("spancat") # Construction via add_pipe with custom model config = {"model": {"@architectures": "my_spancat"}} parser = nlp.add_pipe("spancat", config=config) # Construction from class from spacy.pipeline import SpanCategorizer spancat = SpanCategorizer(nlp.vocab, model, suggester)
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.add_pipe
.
Name | Description |
---|---|
vocab |
The shared vocabulary. |
model |
A model instance that is given a a list of documents and (start, end) indices representing candidate span offsets. The model predicts a probability for each category for each span. |
suggester |
A function that suggests spans. Spans are returned as a ragged array with two integer columns, for the start and end positions. |
name |
String name of the component instance. Used to add entries to the losses during training. |
keyword-only | |
spans_key |
Key of the Doc.spans dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to "sc" . |
threshold |
Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to 0.5 . |
max_positive |
Maximum number of labels to consider positive per span. Defaults to None , indicating no limit. |
SpanCategorizer.__call__
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and pipe
delegate to the predict
and
set_annotations
methods.
Example
doc = nlp("This is a sentence.") spancat = nlp.add_pipe("spancat") # This usually happens under the hood processed = spancat(doc)
Name | Description |
---|---|
doc |
The document to process. |
RETURNS | The processed document. |
SpanCategorizer.pipe
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
spancat = nlp.add_pipe("spancat") for doc in spancat.pipe(docs, batch_size=50): pass
Name | Description |
---|---|
stream |
A stream of documents. |
keyword-only | |
batch_size |
The number of documents to buffer. Defaults to 128 . |
YIELDS | The processed documents in order. |
SpanCategorizer.initialize
Initialize the component for training. get_examples
should be a function that
returns an iterable of Example
objects. At least one example
should be supplied. The data examples are used to initialize the model of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
inferring missing shapes and
setting up the label scheme based on the data. This method is typically called
by Language.initialize
and lets you customize
arguments it receives via the
[initialize.components]
block in the
config.
Example
spancat = nlp.add_pipe("spancat") spancat.initialize(lambda: examples, nlp=nlp)
### config.cfg [initialize.components.spancat] [initialize.components.spancat.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/spancat.json
Name | Description |
---|---|
get_examples |
Function that returns gold-standard annotations in the form of Example objects. Must contain at least one Example . |
keyword-only | |
nlp |
The current nlp object. Defaults to None . |
labels |
The label information to add to the component, as provided by the label_data property after initialization. To generate a reusable JSON file from your data, you should run the init labels command. If no labels are provided, the get_examples callback is used to extract the labels from the data, which may be a lot slower. |
SpanCategorizer.predict
Apply the component's model to a batch of Doc
objects without
modifying them.
Example
spancat = nlp.add_pipe("spancat") scores = spancat.predict([doc1, doc2])
Name | Description |
---|---|
docs |
The documents to predict. |
RETURNS | The model's prediction for each document. |
SpanCategorizer.set_annotations
Modify a batch of Doc
objects using pre-computed scores.
Example
spancat = nlp.add_pipe("spancat") scores = spancat.predict(docs) spancat.set_annotations(docs, scores)
Name | Description |
---|---|
docs |
The documents to modify. |
scores |
The scores to set, produced by SpanCategorizer.predict . |
SpanCategorizer.update
Learn from a batch of Example
objects containing the
predictions and gold-standard annotations, and update the component's model.
Delegates to predict
and
get_loss
.
Example
spancat = nlp.add_pipe("spancat") optimizer = nlp.initialize() losses = spancat.update(examples, sgd=optimizer)
Name | Description |
---|---|
examples |
A batch of Example objects to learn from. |
keyword-only | |
drop |
The dropout rate. |
sgd |
An optimizer. Will be created via create_optimizer if not set. |
losses |
Optional record of the loss during training. Updated using the component name as the key. |
RETURNS | The updated losses dictionary. |
SpanCategorizer.set_candidates
Use the suggester to add a list of Span
candidates to a list of
Doc
objects. This method is intended to be used for debugging
purposes.
Example
spancat = nlp.add_pipe("spancat") spancat.set_candidates(docs, "candidates")
Name | Description |
---|---|
docs |
The documents to modify. |
candidates_key |
Key of the Doc.spans dict to save the candidate spans under. |
SpanCategorizer.get_loss
Find the loss and gradient of loss for the batch of documents and their predicted scores.
Example
spancat = nlp.add_pipe("spancat") scores = spancat.predict([eg.predicted for eg in examples]) loss, d_loss = spancat.get_loss(examples, scores)
Name | Description |
---|---|
examples |
The batch of examples. |
spans_scores |
Scores representing the model's predictions. |
RETURNS | The loss and the gradient, i.e. (loss, gradient) . |
SpanCategorizer.create_optimizer
Create an optimizer for the pipeline component.
Example
spancat = nlp.add_pipe("spancat") optimizer = spancat.create_optimizer()
Name | Description |
---|---|
RETURNS | The optimizer. |
SpanCategorizer.use_params
Modify the pipe's model to use the given parameter values.
Example
spancat = nlp.add_pipe("spancat") with spancat.use_params(optimizer.averages): spancat.to_disk("/best_model")
Name | Description |
---|---|
params |
The parameter values to use in the model. |
SpanCategorizer.add_label
Add a new label to the pipe. Raises an error if the output dimension is already
set, or if the model has already been fully initialized. Note
that you don't have to call this method if you provide a representative data
sample to the initialize
method. In this case, all labels
found in the sample will be automatically added to the model, and the output
dimension will be inferred
automatically.
Example
spancat = nlp.add_pipe("spancat") spancat.add_label("MY_LABEL")
Name | Description |
---|---|
label |
The label to add. |
RETURNS | 0 if the label is already present, otherwise 1 . |
SpanCategorizer.to_disk
Serialize the pipe to disk.
Example
spancat = nlp.add_pipe("spancat") spancat.to_disk("/path/to/spancat")
Name | Description |
---|---|
path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
keyword-only | |
exclude |
String names of serialization fields to exclude. |
SpanCategorizer.from_disk
Load the pipe from disk. Modifies the object in place and returns it.
Example
spancat = nlp.add_pipe("spancat") spancat.from_disk("/path/to/spancat")
Name | Description |
---|---|
path |
A path to a directory. Paths may be either strings or Path -like objects. |
keyword-only | |
exclude |
String names of serialization fields to exclude. |
RETURNS | The modified SpanCategorizer object. |
SpanCategorizer.to_bytes
Example
spancat = nlp.add_pipe("spancat") spancat_bytes = spancat.to_bytes()
Serialize the pipe to a bytestring.
Name | Description |
---|---|
keyword-only | |
exclude |
String names of serialization fields to exclude. |
RETURNS | The serialized form of the SpanCategorizer object. |
SpanCategorizer.from_bytes
Load the pipe from a bytestring. Modifies the object in place and returns it.
Example
spancat_bytes = spancat.to_bytes() spancat = nlp.add_pipe("spancat") spancat.from_bytes(spancat_bytes)
Name | Description |
---|---|
bytes_data |
The data to load from. |
keyword-only | |
exclude |
String names of serialization fields to exclude. |
RETURNS | The SpanCategorizer object. |
SpanCategorizer.labels
The labels currently added to the component.
Example
spancat.add_label("MY_LABEL") assert "MY_LABEL" in spancat.labels
Name | Description |
---|---|
RETURNS | The labels added to the component. |
SpanCategorizer.label_data
The labels currently added to the component and their internal meta information.
This is the data generated by init labels
and used by
SpanCategorizer.initialize
to initialize
the model with a pre-defined label set.
Example
labels = spancat.label_data spancat.initialize(lambda: [], nlp=nlp, labels=labels)
Name | Description |
---|---|
RETURNS | The label data added to the component. |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = spancat.to_disk("/path", exclude=["vocab"])
Name | Description |
---|---|
vocab |
The shared Vocab . |
cfg |
The config file. You usually don't want to exclude this. |
model |
The binary model data. You usually don't want to exclude this. |
Suggesters
spacy.ngram_suggester.v1
Example Config
[components.spancat.suggester] @misc = "spacy.ngram_suggester.v1" sizes = [1, 2, 3]
Suggest all spans of the given lengths. Spans are returned as a ragged array of integers. The array has two columns, indicating the start and end position.
Name | Description |
---|---|
sizes |
The phrase lengths to suggest. For example, [1, 2] will suggest phrases consisting of 1 or 2 tokens. |
CREATES | The suggester function. |
spacy.ngram_range_suggester.v1
Example Config
[components.spancat.suggester] @misc = "spacy.ngram_range_suggester.v1" min_size = 2 max_size = 4
Suggest all spans of at least length min_size
and at most length max_size
(both inclusive). Spans are returned as a ragged array of integers. The array
has two columns, indicating the start and end position.
Name | Description |
---|---|
min_size |
The minimal phrase lengths to suggest (inclusive). |
max_size |
The maximal phrase lengths to suggest (exclusive). |
CREATES | The suggester function. |