mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			340 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			340 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: EntityRecognizer
 | |
| tag: class
 | |
| source: spacy/pipeline/pipes.pyx
 | |
| ---
 | |
| 
 | |
| This class is a subclass of `Pipe` and follows the same API. The pipeline
 | |
| component is available in the [processing pipeline](/usage/processing-pipelines)
 | |
| via the ID `"ner"`.
 | |
| 
 | |
| ## Default config {#config}
 | |
| 
 | |
| This is the default configuration used to initialize the model powering the
 | |
| pipeline component. See the [model architectures](/api/architectures)
 | |
| documentation for details on the architectures and their arguments and
 | |
| hyperparameters. To learn more about how to customize the config and train
 | |
| custom models, check out the [training config](/usage/training#config) docs.
 | |
| 
 | |
| ```python
 | |
| https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/ner_defaults.cfg
 | |
| ```
 | |
| 
 | |
| ## EntityRecognizer.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via create_pipe
 | |
| > ner = nlp.create_pipe("ner")
 | |
| >
 | |
| > # Construction via create_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_ner"}}
 | |
| > parser = nlp.create_pipe("ner", config)
 | |
| >
 | |
| > # Construction from class with custom model from file
 | |
| > from spacy.pipeline import EntityRecognizer
 | |
| > model = util.load_config("model.cfg", create_objects=True)["model"]
 | |
| > ner = EntityRecognizer(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.create_pipe`](/api/language#create_pipe).
 | |
| 
 | |
| | Name        | Type               | Description                                                                     |
 | |
| | ----------- | ------------------ | ------------------------------------------------------------------------------- |
 | |
| | `vocab`     | `Vocab`            | The shared vocabulary.                                                          |
 | |
| | `model`     | `Model`            | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
 | |
| | `**cfg`     | -                  | Configuration parameters.                                                       |
 | |
| | **RETURNS** | `EntityRecognizer` | The newly constructed object.                                                   |
 | |
| 
 | |
| ## EntityRecognizer.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/entityrecognizer#call) and
 | |
| [`pipe`](/api/entityrecognizer#pipe) delegate to the
 | |
| [`predict`](/api/entityrecognizer#predict) and
 | |
| [`set_annotations`](/api/entityrecognizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > doc = nlp("This is a sentence.")
 | |
| > # This usually happens under the hood
 | |
| > processed = ner(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Type  | Description              |
 | |
| | ----------- | ----- | ------------------------ |
 | |
| | `doc`       | `Doc` | The document to process. |
 | |
| | **RETURNS** | `Doc` | The processed document.  |
 | |
| 
 | |
| ## EntityRecognizer.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/entityrecognizer#call) and
 | |
| [`pipe`](/api/entityrecognizer#pipe) delegate to the
 | |
| [`predict`](/api/entityrecognizer#predict) and
 | |
| [`set_annotations`](/api/entityrecognizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > for doc in ner.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name         | Type            | Description                                            |
 | |
| | ------------ | --------------- | ------------------------------------------------------ |
 | |
| | `stream`     | `Iterable[Doc]` | A stream of documents.                                 |
 | |
| | `batch_size` | int             | The number of texts to buffer. Defaults to `128`.      |
 | |
| | **YIELDS**   | `Doc`           | Processed documents in the order of the original text. |
 | |
| 
 | |
| ## EntityRecognizer.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the pipeline's model to a batch of docs, without modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > scores = ner.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Type               | Description                                                                                                |
 | |
| | ----------- | ------------------ | ---------------------------------------------------------------------------------------------------------- |
 | |
| | `docs`      | `Iterable[Doc]`    | The documents to predict.                                                                                  |
 | |
| | **RETURNS** | `List[StateClass]` | List of `syntax.StateClass` objects. `syntax.StateClass` is a helper class for the parse state (internal). |
 | |
| 
 | |
| ## EntityRecognizer.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > scores = ner.predict([doc1, doc2])
 | |
| > ner.set_annotations([doc1, doc2], scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Type               | Description                                                |
 | |
| | -------- | ------------------ | ---------------------------------------------------------- |
 | |
| | `docs`   | `Iterable[Doc]`    | The documents to modify.                                   |
 | |
| | `scores` | `List[StateClass]` | The scores to set, produced by `EntityRecognizer.predict`. |
 | |
| 
 | |
| ## EntityRecognizer.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects, updating the pipe's
 | |
| model. Delegates to [`predict`](/api/entityrecognizer#predict) and
 | |
| [`get_loss`](/api/entityrecognizer#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab, ner_model)
 | |
| > optimizer = nlp.begin_training()
 | |
| > losses = ner.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name              | Type                | Description                                                                                                                                    |
 | |
| | ----------------- | ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `examples`        | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from.                                                                                    |
 | |
| | _keyword-only_    |                     |                                                                                                                                                |
 | |
| | `drop`            | float               | The dropout rate.                                                                                                                              |
 | |
| | `set_annotations` | bool                | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/entityrecognizer#set_annotations). |
 | |
| | `sgd`             | `Optimizer`         | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object.                                                                                |
 | |
| | `losses`          | `Dict[str, float]`  | Optional record of the loss during training. The value keyed by the model's name is updated.                                                   |
 | |
| | **RETURNS**       | `Dict[str, float]`  | The updated `losses` dictionary.                                                                                                               |
 | |
| 
 | |
| ## EntityRecognizer.get_loss {#get_loss tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > scores = ner.predict([eg.predicted for eg in examples])
 | |
| > loss, d_loss = ner.get_loss(examples, scores)
 | |
| > ```
 | |
| 
 | |
| | Name        | Type                | Description                                         |
 | |
| | ----------- | ------------------- | --------------------------------------------------- |
 | |
| | `examples`  | `Iterable[Example]` | The batch of examples.                              |
 | |
| | `scores`    | `List[StateClass]`  | Scores representing the model's predictions.        |
 | |
| | **RETURNS** | tuple               | The loss and the gradient, i.e. `(loss, gradient)`. |
 | |
| 
 | |
| ## EntityRecognizer.begin_training {#begin_training tag="method"}
 | |
| 
 | |
| Initialize the pipe for training, using data examples if available. Return an
 | |
| [`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > nlp.pipeline.append(ner)
 | |
| > optimizer = ner.begin_training(pipeline=nlp.pipeline)
 | |
| > ```
 | |
| 
 | |
| | Name           | Type                    | Description                                                                                                                                                          |
 | |
| | -------------- | ----------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | `Iterable[Example]`     | Optional gold-standard annotations in the form of [`Example`](/api/example) objects.                                                                                 |
 | |
| | `pipeline`     | `List[(str, callable)]` | Optional list of pipeline components that this component is part of.                                                                                                 |
 | |
| | `sgd`          | `Optimizer`             | An optional [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. Will be created via [`create_optimizer`](/api/entityrecognizer#create_optimizer) if not set. |
 | |
| | **RETURNS**    | `Optimizer`             | An optimizer.                                                                                                                                                        |
 | |
| 
 | |
| ## EntityRecognizer.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > optimizer = ner.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Type        | Description                                                     |
 | |
| | ----------- | ----------- | --------------------------------------------------------------- |
 | |
| | **RETURNS** | `Optimizer` | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. |
 | |
| 
 | |
| ## EntityRecognizer.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > with ner.use_params(optimizer.averages):
 | |
| >     ner.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Type | Description                                                                                                |
 | |
| | -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
 | |
| | `params` | dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
 | |
| 
 | |
| ## EntityRecognizer.add_label {#add_label tag="method"}
 | |
| 
 | |
| Add a new label to the pipe.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > ner.add_label("MY_LABEL")
 | |
| > ```
 | |
| 
 | |
| | Name    | Type | Description       |
 | |
| | ------- | ---- | ----------------- |
 | |
| | `label` | str  | The label to add. |
 | |
| 
 | |
| ## EntityRecognizer.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > ner.to_disk("/path/to/ner")
 | |
| > ```
 | |
| 
 | |
| | Name      | Type         | Description                                                                                                           |
 | |
| | --------- | ------------ | --------------------------------------------------------------------------------------------------------------------- |
 | |
| | `path`    | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | |
| | `exclude` | list         | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | |
| 
 | |
| ## EntityRecognizer.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > ner.from_disk("/path/to/ner")
 | |
| > ```
 | |
| 
 | |
| | Name        | Type               | Description                                                                |
 | |
| | ----------- | ------------------ | -------------------------------------------------------------------------- |
 | |
| | `path`      | str / `Path`       | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | |
| | `exclude`   | list               | String names of [serialization fields](#serialization-fields) to exclude.  |
 | |
| | **RETURNS** | `EntityRecognizer` | The modified `EntityRecognizer` object.                                    |
 | |
| 
 | |
| ## EntityRecognizer.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > ner_bytes = ner.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name        | Type  | Description                                                               |
 | |
| | ----------- | ----- | ------------------------------------------------------------------------- |
 | |
| | `exclude`   | list  | String names of [serialization fields](#serialization-fields) to exclude. |
 | |
| | **RETURNS** | bytes | The serialized form of the `EntityRecognizer` object.                     |
 | |
| 
 | |
| ## EntityRecognizer.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner_bytes = ner.to_bytes()
 | |
| > ner = EntityRecognizer(nlp.vocab)
 | |
| > ner.from_bytes(ner_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name         | Type               | Description                                                               |
 | |
| | ------------ | ------------------ | ------------------------------------------------------------------------- |
 | |
| | `bytes_data` | bytes              | The data to load from.                                                    |
 | |
| | `exclude`    | list               | String names of [serialization fields](#serialization-fields) to exclude. |
 | |
| | **RETURNS**  | `EntityRecognizer` | The `EntityRecognizer` object.                                            |
 | |
| 
 | |
| ## EntityRecognizer.labels {#labels tag="property"}
 | |
| 
 | |
| The labels currently added to the component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > ner.add_label("MY_LABEL")
 | |
| > assert "MY_LABEL" in ner.labels
 | |
| > ```
 | |
| 
 | |
| | Name        | Type  | Description                        |
 | |
| | ----------- | ----- | ---------------------------------- |
 | |
| | **RETURNS** | tuple | The labels added to the component. |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = ner.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |