Pillow/src/libImaging/ColorLUT.c

169 lines
6.8 KiB
C
Raw Normal View History

2018-03-25 15:49:42 +03:00
#include "Imaging.h"
#include <math.h>
/* 8 bits for result. Table can overflow [0, 1.0] range,
2018-03-26 11:26:51 +03:00
so we need extra bits for overflow and negative values.
NOTE: This value should be the same as in _imaging/_prepare_lut_table() */
2018-03-25 15:49:42 +03:00
#define PRECISION_BITS (16 - 8 - 2)
2018-03-26 14:14:52 +03:00
#define PRECISION_ROUNDING (1<<(PRECISION_BITS-1))
2018-03-26 22:33:22 +03:00
/* 8 — scales are multiplied on byte.
6 max index in the table
(max size is 65, but index 64 is not reachable) */
2018-03-26 17:23:14 +03:00
#define SCALE_BITS (32 - 8 - 6)
#define SCALE_MASK ((1<<SCALE_BITS) - 1)
2018-03-26 17:23:14 +03:00
#define SHIFT_BITS (16 - 1)
2018-03-26 14:14:52 +03:00
static inline UINT8 clip8(int in)
{
return clip8_lookups[(in + PRECISION_ROUNDING) >> PRECISION_BITS];
2018-03-26 14:14:52 +03:00
}
2018-03-25 15:49:42 +03:00
static inline void
2018-03-26 14:14:52 +03:00
interpolate3(INT16 out[3], const INT16 a[3], const INT16 b[3], INT16 shift)
2018-03-25 15:49:42 +03:00
{
out[0] = (a[0] * ((1<<SHIFT_BITS)-shift) + b[0] * shift) >> SHIFT_BITS;
out[1] = (a[1] * ((1<<SHIFT_BITS)-shift) + b[1] * shift) >> SHIFT_BITS;
out[2] = (a[2] * ((1<<SHIFT_BITS)-shift) + b[2] * shift) >> SHIFT_BITS;
2018-03-25 15:49:42 +03:00
}
static inline void
2018-03-26 14:14:52 +03:00
interpolate4(INT16 out[4], const INT16 a[4], const INT16 b[4], INT16 shift)
2018-03-25 15:49:42 +03:00
{
out[0] = (a[0] * ((1<<SHIFT_BITS)-shift) + b[0] * shift) >> SHIFT_BITS;
out[1] = (a[1] * ((1<<SHIFT_BITS)-shift) + b[1] * shift) >> SHIFT_BITS;
out[2] = (a[2] * ((1<<SHIFT_BITS)-shift) + b[2] * shift) >> SHIFT_BITS;
out[3] = (a[3] * ((1<<SHIFT_BITS)-shift) + b[3] * shift) >> SHIFT_BITS;
2018-03-25 15:49:42 +03:00
}
static inline int
2018-03-26 17:41:25 +03:00
table_index3D(int index1D, int index2D, int index3D,
2018-03-25 15:49:42 +03:00
int size1D, int size1D_2D)
{
2018-03-26 17:41:25 +03:00
return index1D + index2D * size1D + index3D * size1D_2D;
2018-03-25 15:49:42 +03:00
}
/*
2018-03-29 14:39:28 +03:00
Transforms colors of imIn using provided 3D lookup table
2018-04-11 06:46:42 +03:00
and puts the result in imOut. Returns imOut on success or 0 on error.
2018-03-25 15:49:42 +03:00
imOut, imIn images, should be the same size and may be the same image.
Should have 3 or 4 channels.
2018-03-29 14:39:28 +03:00
table_channels number of channels in the lookup table, 3 or 4.
2018-03-25 15:49:42 +03:00
Should be less or equal than number of channels in imOut image;
size1D, size_2D and size3D dimensions of provided table;
2018-03-29 14:39:28 +03:00
table flat table,
2018-03-25 15:49:42 +03:00
array with table_channels × size1D × size2D × size3D elements,
where channels are changed first, then 1D, then 2D, then 3D.
Each element is signed 16-bit int where 0 is lowest output value
and 255 << PRECISION_BITS (16320) is highest value.
2018-04-11 06:46:42 +03:00
*/
2018-03-25 15:49:42 +03:00
Imaging
ImagingColorLUT3D_linear(Imaging imOut, Imaging imIn, int table_channels,
int size1D, int size2D, int size3D,
INT16* table)
{
2018-03-26 17:34:56 +03:00
/* This float to int conversion doesn't have rounding
2018-03-26 17:41:25 +03:00
error compensation (+0.5) for two reasons:
2018-03-26 17:34:56 +03:00
1. As we don't hit the highest value,
we can use one extra bit for precision.
2. For every pixel, we interpolate 8 elements from the table:
2018-03-26 22:33:22 +03:00
current and +1 for every dimension and their combinations.
2018-03-26 17:34:56 +03:00
If we hit the upper cells from the table,
+1 cells will be outside of the table.
With this compensation we never hit the upper cells
2018-03-26 22:33:22 +03:00
but this also doesn't introduce any noticeable difference. */
2018-03-26 17:23:14 +03:00
UINT32 scale1D = (size1D - 1) / 255.0 * (1<<SCALE_BITS);
UINT32 scale2D = (size2D - 1) / 255.0 * (1<<SCALE_BITS);
UINT32 scale3D = (size3D - 1) / 255.0 * (1<<SCALE_BITS);
2018-03-25 15:49:42 +03:00
int size1D_2D = size1D * size2D;
int x, y;
2018-03-31 09:52:05 +03:00
ImagingSectionCookie cookie;
2018-03-25 15:49:42 +03:00
if (table_channels < 3 || table_channels > 4) {
PyErr_SetString(PyExc_ValueError, "table_channels could be 3 or 4");
return NULL;
}
if (imIn->type != IMAGING_TYPE_UINT8 ||
imOut->type != IMAGING_TYPE_UINT8 ||
imIn->bands < 3 ||
imOut->bands < table_channels
) {
return (Imaging) ImagingError_ModeError();
}
/* In case we have one extra band in imOut and don't have in imIn.*/
if (imOut->bands > table_channels && imOut->bands > imIn->bands) {
return (Imaging) ImagingError_ModeError();
}
2018-03-31 09:52:05 +03:00
ImagingSectionEnter(&cookie);
2018-03-25 15:49:42 +03:00
for (y = 0; y < imOut->ysize; y++) {
2018-03-26 14:14:52 +03:00
UINT8* rowIn = (UINT8 *)imIn->image[y];
char* rowOut = (char *)imOut->image[y];
2018-03-26 14:18:17 +03:00
for (x = 0; x < imOut->xsize; x++) {
2018-03-26 17:23:14 +03:00
UINT32 index1D = rowIn[x*4 + 0] * scale1D;
UINT32 index2D = rowIn[x*4 + 1] * scale2D;
UINT32 index3D = rowIn[x*4 + 2] * scale3D;
INT16 shift1D = (SCALE_MASK & index1D) >> (SCALE_BITS - SHIFT_BITS);
INT16 shift2D = (SCALE_MASK & index2D) >> (SCALE_BITS - SHIFT_BITS);
INT16 shift3D = (SCALE_MASK & index3D) >> (SCALE_BITS - SHIFT_BITS);
int idx = table_channels * table_index3D(
2018-03-26 17:41:25 +03:00
index1D >> SCALE_BITS, index2D >> SCALE_BITS,
index3D >> SCALE_BITS, size1D, size1D_2D);
2018-03-26 14:18:17 +03:00
INT16 result[4], left[4], right[4];
INT16 leftleft[4], leftright[4], rightleft[4], rightright[4];
if (table_channels == 3) {
UINT32 v;
2018-03-26 14:14:52 +03:00
interpolate3(leftleft, &table[idx + 0], &table[idx + 3], shift1D);
interpolate3(leftright, &table[idx + size1D*3],
&table[idx + size1D*3 + 3], shift1D);
interpolate3(left, leftleft, leftright, shift2D);
interpolate3(rightleft, &table[idx + size1D_2D*3],
&table[idx + size1D_2D*3 + 3], shift1D);
interpolate3(rightright, &table[idx + size1D_2D*3 + size1D*3],
&table[idx + size1D_2D*3 + size1D*3 + 3], shift1D);
interpolate3(right, rightleft, rightright, shift2D);
interpolate3(result, left, right, shift3D);
v = MAKE_UINT32(
2018-03-26 17:23:14 +03:00
clip8(result[0]), clip8(result[1]),
clip8(result[2]), rowIn[x*4 + 3]);
memcpy(rowOut + x * sizeof(v), &v, sizeof(v));
2018-03-26 14:18:17 +03:00
}
if (table_channels == 4) {
UINT32 v;
2018-03-26 14:18:17 +03:00
interpolate4(leftleft, &table[idx + 0], &table[idx + 4], shift1D);
interpolate4(leftright, &table[idx + size1D*4],
&table[idx + size1D*4 + 4], shift1D);
interpolate4(left, leftleft, leftright, shift2D);
interpolate4(rightleft, &table[idx + size1D_2D*4],
&table[idx + size1D_2D*4 + 4], shift1D);
interpolate4(rightright, &table[idx + size1D_2D*4 + size1D*4],
&table[idx + size1D_2D*4 + size1D*4 + 4], shift1D);
interpolate4(right, rightleft, rightright, shift2D);
2018-03-26 14:14:52 +03:00
2018-03-26 14:18:17 +03:00
interpolate4(result, left, right, shift3D);
v = MAKE_UINT32(
2018-03-26 17:23:14 +03:00
clip8(result[0]), clip8(result[1]),
clip8(result[2]), clip8(result[3]));
memcpy(rowOut + x * sizeof(v), &v, sizeof(v));
2018-03-26 14:14:52 +03:00
}
2018-03-25 15:49:42 +03:00
}
}
2018-03-31 09:52:05 +03:00
ImagingSectionLeave(&cookie);
2018-03-25 15:49:42 +03:00
return imOut;
}