Pillow/src/libImaging/ColorLUT.c

115 lines
3.9 KiB
C
Raw Normal View History

2018-03-25 15:49:42 +03:00
#include "Imaging.h"
#include <math.h>
#define ROUND_UP(f) ((int) ((f) >= 0.0 ? (f) + 0.5F : (f) - 0.5F))
/* 8 bits for result. Table can overflow [0, 1.0] range,
2018-03-26 11:26:51 +03:00
so we need extra bits for overflow and negative values.
NOTE: This value should be the same as in _imaging/_prepare_lut_table() */
2018-03-25 15:49:42 +03:00
#define PRECISION_BITS (16 - 8 - 2)
static inline void
interpolate3(INT16 out[3], const INT16 a[3], const INT16 b[3], float shift)
{
2018-03-26 11:26:51 +03:00
out[0] = a[0] * (1-shift) + b[0] * shift + 0.5;
out[1] = a[1] * (1-shift) + b[1] * shift + 0.5;
out[2] = a[2] * (1-shift) + b[2] * shift + 0.5;
2018-03-25 15:49:42 +03:00
}
static inline void
interpolate4(INT16 out[3], const INT16 a[3], const INT16 b[3], float shift)
{
2018-03-26 11:26:51 +03:00
out[0] = a[0] * (1-shift) + b[0] * shift + 0.5;
out[1] = a[1] * (1-shift) + b[1] * shift + 0.5;
out[2] = a[2] * (1-shift) + b[2] * shift + 0.5;
out[3] = a[3] * (1-shift) + b[3] * shift + 0.5;
2018-03-25 15:49:42 +03:00
}
static inline int
table3D_index3(int index1D, int index2D, int index3D,
int size1D, int size1D_2D)
{
return (index1D + index2D * size1D + index3D * size1D_2D) * 3;
}
static inline int
table3D_index4(int index1D, int index2D, int index3D,
int size1D, int size1D_2D)
{
return (index1D + index2D * size1D + index3D * size1D_2D) * 4;
}
/*
Transforms colors of imIn using provided 3D look-up table
and puts the result in imOut. Returns imOut on sucess or 0 on error.
imOut, imIn images, should be the same size and may be the same image.
Should have 3 or 4 channels.
table_channels number of channels in the look-up table, 3 or 4.
Should be less or equal than number of channels in imOut image;
size1D, size_2D and size3D dimensions of provided table;
table flatten table,
array with table_channels × size1D × size2D × size3D elements,
where channels are changed first, then 1D, then 2D, then 3D.
Each element is signed 16-bit int where 0 is lowest output value
and 255 << PRECISION_BITS (16320) is highest value.
*/
Imaging
ImagingColorLUT3D_linear(Imaging imOut, Imaging imIn, int table_channels,
int size1D, int size2D, int size3D,
INT16* table)
{
2018-03-26 11:26:51 +03:00
/* The fractions are a way to avoid overflow.
For every pixel, we interpolate 8 elements from the table:
current and +1 for every dimension and they combinations.
If we hit the upper cells from the table,
+1 cells will be outside of the table.
With this compensation we never hit the upper cells
but this also doesn't introduce any noticable difference. */
float scale1D = (size1D - 1) / (255.0002);
float scale2D = (size2D - 1) / (255.0002);
float scale3D = (size3D - 1) / (255.0002);
2018-03-25 15:49:42 +03:00
int size1D_2D = size1D * size2D;
int x, y;
if (table_channels < 3 || table_channels > 4) {
PyErr_SetString(PyExc_ValueError, "table_channels could be 3 or 4");
return NULL;
}
if (imIn->type != IMAGING_TYPE_UINT8 ||
imOut->type != IMAGING_TYPE_UINT8 ||
imIn->bands < 3 ||
imOut->bands < table_channels
) {
return (Imaging) ImagingError_ModeError();
}
/* In case we have one extra band in imOut and don't have in imIn.*/
if (imOut->bands > table_channels && imOut->bands > imIn->bands) {
return (Imaging) ImagingError_ModeError();
}
for (y = 0; y < imOut->ysize; y++) {
UINT8 *rowIn = (UINT8 *)imIn->image[y];
UINT8 *rowOut = (UINT8 *)imIn->image[y];
for (x = 0; x < imOut->xsize; x++) {
float scaled1D = rowIn[x*4 + 0] * scale1D;
float scaled2D = rowIn[x*4 + 1] * scale2D;
float scaled3D = rowIn[x*4 + 2] * scale3D;
int index1D = (int) scaled1D;
int index2D = (int) scaled2D;
int index3D = (int) scaled3D;
float shift1D = scaled1D - index1D;
float shift2D = scaled2D - index2D;
float shift3D = scaled3D - index3D;
}
}
return imOut;
}