spaCy/spacy/pipeline/tagger.pyx

366 lines
14 KiB
Cython
Raw Normal View History

Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
# cython: infer_types=True, profile=True, binding=True
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
from typing import Callable, Dict, Iterable, List, Optional, Union
from typing import Tuple
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
import numpy
import srsly
from thinc.api import Model, set_dropout_rate, Config
from thinc.legacy import LegacySequenceCategoricalCrossentropy
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
from thinc.types import Floats2d, Ints1d
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
import warnings
from itertools import islice
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
from ..tokens.doc cimport Doc
from ..morphology cimport Morphology
from ..vocab cimport Vocab
from .trainable_pipe import TrainablePipe
from .pipe import deserialize_config
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
from ..language import Language
from ..attrs import POS, ID
from ..parts_of_speech import X
2020-10-04 12:16:31 +03:00
from ..errors import Errors, Warnings
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 13:53:02 +03:00
from ..scorer import Scorer
from ..training import validate_examples, validate_get_examples
from ..util import registry
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
from .. import util
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]]
# See #9050
BACKWARD_OVERWRITE = False
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
default_model_config = """
[model]
@architectures = "spacy.Tagger.v2"
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v2"
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
pretrained_vectors = null
width = 96
depth = 4
embed_size = 2000
window_size = 1
maxout_pieces = 3
subword_features = true
"""
DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"tagger",
assigns=["token.tag"],
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
default_config={
"model": DEFAULT_TAGGER_MODEL,
"overwrite": False,
"scorer": {"@scorers": "spacy.tagger_scorer.v1"},
"neg_prefix": "!",
"save_activations": False,
},
default_score_weights={"tag_acc": 1.0},
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
)
def make_tagger(
nlp: Language,
name: str,
model: Model,
overwrite: bool,
scorer: Optional[Callable],
neg_prefix: str,
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
save_activations: bool,
):
2020-08-09 16:09:31 +03:00
"""Construct a part-of-speech tagger component.
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
the tag probabilities. The output vectors should match the number of tags
in size, and be normalized as probabilities (all scores between 0 and 1,
with the rows summing to 1).
"""
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix,
save_activations=save_activations)
def tagger_score(examples, **kwargs):
return Scorer.score_token_attr(examples, "tag", **kwargs)
@registry.scorers("spacy.tagger_scorer.v1")
def make_tagger_scorer():
return tagger_score
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
class Tagger(TrainablePipe):
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
"""Pipeline component for part-of-speech tagging.
DOCS: https://spacy.io/api/tagger
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
"""
def __init__(
self,
vocab,
model,
name="tagger",
*,
overwrite=BACKWARD_OVERWRITE,
scorer=tagger_score,
neg_prefix="!",
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
save_activations: bool = False,
):
"""Initialize a part-of-speech tagger.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_token_attr for the attribute "tag".
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
save_activations (bool): save model activations in Doc when annotating.
DOCS: https://spacy.io/api/tagger#init
"""
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
self.vocab = vocab
self.model = model
self.name = name
self._rehearsal_model = None
cfg = {"labels": [], "overwrite": overwrite, "neg_prefix": neg_prefix}
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
self.cfg = dict(sorted(cfg.items()))
self.scorer = scorer
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
self.save_activations = save_activations
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
@property
def labels(self):
"""The labels currently added to the component. Note that even for a
blank component, this will always include the built-in coarse-grained
part-of-speech tags by default.
RETURNS (Tuple[str]): The labels.
DOCS: https://spacy.io/api/tagger#labels
"""
Add Lemmatizer and simplify related components (#5848) * Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
2020-08-07 16:27:13 +03:00
return tuple(self.cfg["labels"])
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
2020-09-29 17:22:13 +03:00
@property
def label_data(self):
2020-09-29 19:30:38 +03:00
"""Data about the labels currently added to the component."""
2020-09-29 17:22:13 +03:00
return tuple(self.cfg["labels"])
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
def predict(self, docs) -> ActivationsT:
"""Apply the pipeline's model to a batch of docs, without modifying them.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/tagger#predict
"""
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
n_labels = len(self.labels)
guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs]
assert len(guesses) == len(docs)
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
return {"probabilities": guesses, "label_ids": guesses}
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
scores = self.model.predict(docs)
assert len(scores) == len(docs), (len(scores), len(docs))
guesses = self._scores2guesses(scores)
assert len(guesses) == len(docs)
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
return {"probabilities": scores, "label_ids": guesses}
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
def _scores2guesses(self, scores):
guesses = []
for doc_scores in scores:
doc_guesses = doc_scores.argmax(axis=1)
if not isinstance(doc_guesses, numpy.ndarray):
doc_guesses = doc_guesses.get()
guesses.append(doc_guesses)
return guesses
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
activations (ActivationsT): The activations used for setting annotations, produced by Tagger.predict.
DOCS: https://spacy.io/api/tagger#set_annotations
"""
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
batch_tag_ids = activations["label_ids"]
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
if isinstance(docs, Doc):
docs = [docs]
cdef Doc doc
cdef Vocab vocab = self.vocab
cdef bint overwrite = self.cfg["overwrite"]
labels = self.labels
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
for i, doc in enumerate(docs):
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
if self.save_activations:
doc.activations[self.name] = {}
for act_name, acts in activations.items():
doc.activations[self.name][act_name] = acts[i]
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, "get"):
doc_tag_ids = doc_tag_ids.get()
for j, tag_id in enumerate(doc_tag_ids):
if doc.c[j].tag == 0 or overwrite:
doc.c[j].tag = self.vocab.strings[labels[tag_id]]
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
def update(self, examples, *, drop=0., sgd=None, losses=None):
"""Learn from a batch of documents and gold-standard information,
Revert "Set annotations in update" (#6810) * Revert "Set annotations in update (#6767)" This reverts commit e680efc7cc365a31c1c7f9d5eb8733c1e61e558d. * Fix version * Update spacy/pipeline/entity_linker.py * Update spacy/pipeline/entity_linker.py * Update spacy/pipeline/tagger.pyx * Update spacy/pipeline/tok2vec.py * Update spacy/pipeline/tok2vec.py * Update spacy/pipeline/transition_parser.pyx * Update spacy/pipeline/transition_parser.pyx * Update website/docs/api/multilabel_textcategorizer.md * Update website/docs/api/tok2vec.md * Update website/docs/usage/layers-architectures.md * Update website/docs/usage/layers-architectures.md * Update website/docs/api/transformer.md * Update website/docs/api/textcategorizer.md * Update website/docs/api/tagger.md * Update spacy/pipeline/entity_linker.py * Update website/docs/api/sentencerecognizer.md * Update website/docs/api/pipe.md * Update website/docs/api/morphologizer.md * Update website/docs/api/entityrecognizer.md * Update spacy/pipeline/entity_linker.py * Update spacy/pipeline/multitask.pyx * Update spacy/pipeline/tagger.pyx * Update spacy/pipeline/tagger.pyx * Update spacy/pipeline/textcat.py * Update spacy/pipeline/textcat.py * Update spacy/pipeline/textcat.py * Update spacy/pipeline/tok2vec.py * Update spacy/pipeline/trainable_pipe.pyx * Update spacy/pipeline/trainable_pipe.pyx * Update spacy/pipeline/transition_parser.pyx * Update spacy/pipeline/transition_parser.pyx * Update website/docs/api/entitylinker.md * Update website/docs/api/dependencyparser.md * Update spacy/pipeline/trainable_pipe.pyx
2021-01-25 17:18:45 +03:00
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tagger#update
"""
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
validate_examples(examples, "Tagger.update")
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
# Handle cases where there are no tokens in any docs.
2020-10-14 16:00:49 +03:00
return losses
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
set_dropout_rate(self.model, drop)
tag_scores, bp_tag_scores = self.model.begin_update([eg.predicted for eg in examples])
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
for sc in tag_scores:
if self.model.ops.xp.isnan(sc.sum()):
raise ValueError(Errors.E940)
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
loss, d_tag_scores = self.get_loss(examples, tag_scores)
bp_tag_scores(d_tag_scores)
if sgd not in (None, False):
2020-10-05 17:23:33 +03:00
self.finish_update(sgd)
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
losses[self.name] += loss
return losses
def rehearse(self, examples, *, drop=0., sgd=None, losses=None):
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
teach the current model to make predictions similar to an initial model,
to try to address the "catastrophic forgetting" problem. This feature is
experimental.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tagger#rehearse
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
"""
2020-10-14 16:11:34 +03:00
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
validate_examples(examples, "Tagger.rehearse")
docs = [eg.predicted for eg in examples]
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
if self._rehearsal_model is None:
2020-10-14 16:11:34 +03:00
return losses
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
2020-10-14 16:00:49 +03:00
return losses
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
set_dropout_rate(self.model, drop)
tag_scores, bp_tag_scores = self.model.begin_update(docs)
tutor_tag_scores, _ = self._rehearsal_model.begin_update(docs)
loss, grads = self.get_teacher_student_loss(tutor_tag_scores, tag_scores)
bp_tag_scores(grads)
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += loss
2020-10-14 16:00:49 +03:00
return losses
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
def get_teacher_student_loss(
self, teacher_scores: List[Floats2d], student_scores: List[Floats2d]
) -> Tuple[float, List[Floats2d]]:
"""Calculate the loss and its gradient for a batch of student
scores, relative to teacher scores.
teacher_scores: Scores representing the teacher model's predictions.
student_scores: Scores representing the student model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/tagger#get_teacher_student_loss
"""
loss_func = LegacySequenceCategoricalCrossentropy(normalize=False)
d_scores, loss = loss_func(student_scores, teacher_scores)
if self.model.ops.xp.isnan(loss):
raise ValueError(Errors.E910.format(name=self.name))
return float(loss), d_scores
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
def get_loss(self, examples, scores):
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/tagger#get_loss
"""
validate_examples(examples, "Tagger.get_loss")
loss_func = LegacySequenceCategoricalCrossentropy(names=self.labels, normalize=False, neg_prefix=self.cfg["neg_prefix"])
# Convert empty tag "" to missing value None so that both misaligned
# tokens and tokens with missing annotation have the default missing
# value None.
truths = []
for eg in examples:
eg_truths = [tag if tag is not "" else None for tag in eg.get_aligned("TAG", as_string=True)]
truths.append(eg_truths)
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
d_scores, loss = loss_func(scores, truths)
if self.model.ops.xp.isnan(loss):
2020-10-04 12:16:31 +03:00
raise ValueError(Errors.E910.format(name=self.name))
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
return float(loss), d_scores
2020-09-29 17:48:44 +03:00
def initialize(self, get_examples, *, nlp=None, labels=None):
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects..
2020-09-29 13:20:26 +03:00
nlp (Language): The current nlp object the component is part of.
2020-10-01 18:38:17 +03:00
labels: The labels to add to the component, typically generated by the
`init labels` command. If no labels are provided, the get_examples
callback is used to extract the labels from the data.
DOCS: https://spacy.io/api/tagger#initialize
"""
validate_get_examples(get_examples, "Tagger.initialize")
util.check_lexeme_norms(self.vocab, "tagger")
2020-09-29 17:48:44 +03:00
if labels is not None:
for tag in labels:
self.add_label(tag)
else:
tags = set()
for example in get_examples():
for token in example.y:
if token.tag_:
tags.add(token.tag_)
for tag in sorted(tags):
self.add_label(tag)
doc_sample = []
label_sample = []
for example in islice(get_examples(), 10):
doc_sample.append(example.x)
gold_tags = example.get_aligned("TAG", as_string=True)
gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
self._require_labels()
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=doc_sample, Y=label_sample)
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
Add Lemmatizer and simplify related components (#5848) * Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
2020-08-07 16:27:13 +03:00
def add_label(self, label):
"""Add a new label to the pipe.
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/tagger#add_label
"""
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
if not isinstance(label, str):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
self._allow_extra_label()
Add Lemmatizer and simplify related components (#5848) * Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
2020-08-07 16:27:13 +03:00
self.cfg["labels"].append(label)
2020-10-10 19:55:07 +03:00
self.vocab.strings.add(label)
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
return 1