spaCy/bin/parser/train.py

280 lines
9.6 KiB
Python
Raw Normal View History

2015-01-09 20:53:26 +03:00
#!/usr/bin/env python
from __future__ import division
from __future__ import unicode_literals
import os
from os import path
import shutil
import codecs
import random
import plac
import cProfile
import pstats
import re
2015-01-09 20:53:26 +03:00
import spacy.util
from spacy.en import English
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
from spacy.syntax.util import Config
from spacy.gold import read_json_file
from spacy.gold import GoldParse
2015-01-09 20:53:26 +03:00
from spacy.scorer import Scorer
2015-01-09 20:53:26 +03:00
2015-05-24 03:50:14 +03:00
def add_noise(c, noise_level):
if random.random() >= noise_level:
return c
elif c == ' ':
return '\n'
elif c == '\n':
return ' '
elif c in ['.', "'", "!", "?"]:
return ''
else:
return c.lower()
def score_model(scorer, nlp, raw_text, annot_tuples, train_tags=None):
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
else:
2015-05-31 07:49:06 +03:00
tokens = nlp.tokenizer(raw_text)
if train_tags is not None:
key = hash(tokens.string)
nlp.tagger.tag_from_strings(tokens, train_tags[key])
else:
nlp.tagger(tokens)
nlp.entity(tokens)
nlp.parser(tokens)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=False)
2015-05-30 06:23:02 +03:00
def _merge_sents(sents):
m_deps = [[], [], [], [], [], []]
m_brackets = []
i = 0
for (ids, words, tags, heads, labels, ner), brackets in sents:
m_deps[0].extend(id_ + i for id_ in ids)
m_deps[1].extend(words)
m_deps[2].extend(tags)
m_deps[3].extend(head + i for head in heads)
m_deps[4].extend(labels)
m_deps[5].extend(ner)
m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets)
i += len(ids)
return [(m_deps, m_brackets)]
def get_train_tags(Language, model_dir, docs, gold_preproc):
taggings = {}
for train_part, test_part in get_partitions(docs, 5):
nlp = _train_tagger(Language, model_dir, train_part, gold_preproc)
for tokens in _tag_partition(nlp, test_part):
taggings[hash(tokens.string)] = [w.tag_ for w in tokens]
return taggings
def get_partitions(docs, n_parts):
random.shuffle(docs)
n_test = len(docs) / n_parts
n_train = len(docs) - n_test
for part in range(n_parts):
start = int(part * n_test)
end = int(start + n_test)
yield docs[:start] + docs[end:], docs[start:end]
def _train_tagger(Language, model_dir, docs, gold_preproc=False, n_iter=5):
pos_model_dir = path.join(model_dir, 'pos')
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
os.mkdir(pos_model_dir)
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
nlp = Language(data_dir=model_dir)
print "Itn.\tTag %"
for itn in range(n_iter):
scorer = Scorer()
correct = 0
total = 0
for raw_text, sents in docs:
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, ctnt in sents:
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
else:
tokens = nlp.tokenizer(raw_text)
gold = GoldParse(tokens, annot_tuples)
correct += nlp.tagger.train(tokens, gold.tags)
total += len(tokens)
random.shuffle(docs)
print itn, '%.3f' % (correct / total)
nlp.tagger.model.end_training()
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
return nlp
def _tag_partition(nlp, docs, gold_preproc=False):
for raw_text, sents in docs:
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, _ in sents:
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
else:
tokens = nlp.tokenizer(raw_text)
nlp.tagger(tokens)
yield tokens
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
2015-06-02 03:01:33 +03:00
train_tags=None, beam_width=1):
2015-01-09 20:53:26 +03:00
dep_model_dir = path.join(model_dir, 'deps')
pos_model_dir = path.join(model_dir, 'pos')
ner_model_dir = path.join(model_dir, 'ner')
2015-01-09 20:53:26 +03:00
if path.exists(dep_model_dir):
shutil.rmtree(dep_model_dir)
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
if path.exists(ner_model_dir):
shutil.rmtree(ner_model_dir)
2015-01-09 20:53:26 +03:00
os.mkdir(dep_model_dir)
os.mkdir(pos_model_dir)
os.mkdir(ner_model_dir)
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
2015-01-09 20:53:26 +03:00
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
labels=Language.ParserTransitionSystem.get_labels(gold_tuples),
2015-06-02 03:01:33 +03:00
beam_width=beam_width)
Config.write(ner_model_dir, 'config', features='ner', seed=seed,
2015-06-02 03:01:33 +03:00
labels=Language.EntityTransitionSystem.get_labels(gold_tuples),
beam_width=1)
if n_sents > 0:
gold_tuples = gold_tuples[:n_sents]
nlp = Language(data_dir=model_dir)
print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %"
2015-01-09 20:53:26 +03:00
for itn in range(n_iter):
scorer = Scorer()
loss = 0
for raw_text, sents in gold_tuples:
2015-05-30 06:23:02 +03:00
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, ctnt in sents:
score_model(scorer, nlp, raw_text, annot_tuples, train_tags)
2015-05-30 06:23:02 +03:00
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
else:
tokens = nlp.tokenizer(raw_text)
if train_tags is not None:
sent_id = hash(tokens.string)
nlp.tagger.tag_from_strings(tokens, train_tags[sent_id])
else:
nlp.tagger(tokens)
gold = GoldParse(tokens, annot_tuples, make_projective=True)
2015-06-02 03:01:33 +03:00
loss += nlp.parser.train(tokens, gold)
nlp.entity.train(tokens, gold)
nlp.tagger.train(tokens, gold.tags)
random.shuffle(gold_tuples)
print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
scorer.tags_acc,
scorer.token_acc)
2015-01-09 20:53:26 +03:00
nlp.parser.model.end_training()
nlp.entity.model.end_training()
2015-01-09 20:53:26 +03:00
nlp.tagger.model.end_training()
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
2015-01-09 20:53:26 +03:00
2015-05-30 06:23:02 +03:00
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False):
nlp = Language(data_dir=model_dir)
scorer = Scorer()
for raw_text, sents in gold_tuples:
2015-05-30 06:23:02 +03:00
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, brackets in sents:
2015-05-30 06:23:02 +03:00
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
nlp.entity(tokens)
nlp.parser(tokens)
else:
tokens = nlp(raw_text, merge_mwes=False)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=verbose)
return scorer
2015-03-20 03:14:20 +03:00
def write_parses(Language, dev_loc, model_dir, out_loc):
nlp = Language()
gold_tuples = read_docparse_file(dev_loc)
scorer = Scorer()
out_file = codecs.open(out_loc, 'w', 'utf8')
for raw_text, segmented_text, annot_tuples in gold_tuples:
tokens = nlp(raw_text)
for t in tokens:
out_file.write(
'%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_)
)
return scorer
2015-02-23 22:05:04 +03:00
@plac.annotations(
train_loc=("Location of training file or directory"),
dev_loc=("Location of development file or directory"),
2015-05-24 03:50:14 +03:00
corruption_level=("Amount of noise to add to training data", "option", "c", float),
gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool),
2015-02-23 22:05:04 +03:00
model_dir=("Location of output model directory",),
2015-03-20 03:14:20 +03:00
out_loc=("Out location", "option", "o", str),
n_sents=("Number of training sentences", "option", "n", int),
n_iter=("Number of training iterations", "option", "i", int),
beam_width=("Number of candidates to maintain in the beam", "option", "k", int),
verbose=("Verbose error reporting", "flag", "v", bool),
debug=("Debug mode", "flag", "d", bool)
2015-02-23 22:05:04 +03:00
)
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
debug=False, corruption_level=0.0, gold_preproc=False, beam_width=1):
2015-05-28 23:40:26 +03:00
gold_train = list(read_json_file(train_loc))
#taggings = get_train_tags(English, model_dir, gold_train, gold_preproc)
taggings = None
2015-05-28 23:40:26 +03:00
train(English, gold_train, model_dir,
feat_set='basic' if not debug else 'debug',
gold_preproc=gold_preproc, n_sents=n_sents,
corruption_level=corruption_level, n_iter=n_iter,
train_tags=taggings, beam_width=beam_width)
2015-05-30 06:23:02 +03:00
if out_loc:
write_parses(English, dev_loc, model_dir, out_loc)
scorer = evaluate(English, list(read_json_file(dev_loc)),
model_dir, gold_preproc=gold_preproc, verbose=verbose)
print 'TOK', 100-scorer.token_acc
print 'POS', scorer.tags_acc
print 'UAS', scorer.uas
print 'LAS', scorer.las
print 'NER P', scorer.ents_p
print 'NER R', scorer.ents_r
print 'NER F', scorer.ents_f
2015-04-19 11:31:31 +03:00
2015-01-09 20:53:26 +03:00
if __name__ == '__main__':
plac.call(main)