2019-05-07 17:03:42 +03:00
|
|
|
# coding: utf-8
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
|
|
import os
|
|
|
|
import datetime
|
|
|
|
from os import listdir
|
2019-05-14 23:55:56 +03:00
|
|
|
import numpy as np
|
2019-05-16 19:25:34 +03:00
|
|
|
import random
|
|
|
|
from thinc.neural._classes.convolution import ExtractWindow
|
2019-05-07 17:03:42 +03:00
|
|
|
|
|
|
|
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
|
2019-05-09 18:23:19 +03:00
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, logistic
|
2019-05-09 18:23:19 +03:00
|
|
|
|
2019-05-20 12:58:48 +03:00
|
|
|
from thinc.api import chain, concatenate, flatten_add_lengths, clone, with_flatten
|
2019-05-17 02:51:18 +03:00
|
|
|
from thinc.v2v import Model, Maxout, Affine
|
2019-05-20 12:58:48 +03:00
|
|
|
from thinc.t2v import Pooling, mean_pool, sum_pool
|
2019-05-14 09:37:52 +03:00
|
|
|
from thinc.t2t import ParametricAttention
|
|
|
|
from thinc.misc import Residual
|
2019-05-16 19:25:34 +03:00
|
|
|
from thinc.misc import LayerNorm as LN
|
2019-05-07 17:03:42 +03:00
|
|
|
|
2019-05-13 15:26:04 +03:00
|
|
|
from spacy.tokens import Doc
|
|
|
|
|
2019-05-07 17:03:42 +03:00
|
|
|
""" TODO: this code needs to be implemented in pipes.pyx"""
|
|
|
|
|
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
class EL_Model:
|
2019-05-09 18:23:19 +03:00
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
PRINT_LOSS = False
|
2019-05-14 23:55:56 +03:00
|
|
|
PRINT_F = True
|
2019-05-17 18:44:11 +03:00
|
|
|
PRINT_TRAIN = True
|
2019-05-15 03:23:08 +03:00
|
|
|
EPS = 0.0000000005
|
2019-05-16 19:25:34 +03:00
|
|
|
CUTOFF = 0.5
|
|
|
|
|
|
|
|
INPUT_DIM = 300
|
2019-05-20 18:20:39 +03:00
|
|
|
ENTITY_WIDTH = 4 # 64
|
|
|
|
ARTICLE_WIDTH = 8 # 128
|
|
|
|
HIDDEN_WIDTH = 6 # 64
|
2019-05-17 18:44:11 +03:00
|
|
|
|
|
|
|
DROP = 0.00
|
2019-05-14 23:55:56 +03:00
|
|
|
|
2019-05-09 18:23:19 +03:00
|
|
|
name = "entity_linker"
|
|
|
|
|
|
|
|
def __init__(self, kb, nlp):
|
|
|
|
run_el._prepare_pipeline(nlp, kb)
|
|
|
|
self.nlp = nlp
|
|
|
|
self.kb = kb
|
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
self._build_cnn(hidden_entity_width=self.ENTITY_WIDTH, hidden_article_width=self.ARTICLE_WIDTH)
|
|
|
|
|
2019-05-14 09:37:52 +03:00
|
|
|
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
|
2019-05-16 19:25:34 +03:00
|
|
|
# raise errors instead of runtime warnings in case of int/float overflow
|
|
|
|
np.seterr(all='raise')
|
|
|
|
|
2019-05-13 15:26:04 +03:00
|
|
|
Doc.set_extension("entity_id", default=None)
|
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
train_inst, train_pos, train_neg, train_doc = self._get_training_data(training_dir,
|
|
|
|
entity_descr_output,
|
|
|
|
False,
|
|
|
|
trainlimit,
|
|
|
|
to_print=False)
|
|
|
|
|
|
|
|
dev_inst, dev_pos, dev_neg, dev_doc = self._get_training_data(training_dir,
|
|
|
|
entity_descr_output,
|
|
|
|
True,
|
|
|
|
devlimit,
|
|
|
|
to_print=False)
|
2019-05-16 19:25:34 +03:00
|
|
|
self._begin_training()
|
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
print()
|
|
|
|
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_random", calc_random=True)
|
|
|
|
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_random", calc_random=True)
|
|
|
|
print()
|
2019-05-20 18:20:39 +03:00
|
|
|
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_pre", avg=False)
|
2019-05-17 02:51:18 +03:00
|
|
|
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_pre", avg=False)
|
2019-05-16 19:25:34 +03:00
|
|
|
|
|
|
|
instance_pos_count = 0
|
|
|
|
instance_neg_count = 0
|
2019-05-09 18:23:19 +03:00
|
|
|
|
|
|
|
if to_print:
|
|
|
|
print()
|
2019-05-17 02:51:18 +03:00
|
|
|
print("Training on", len(train_inst.values()), "articles")
|
|
|
|
print("Dev test on", len(dev_inst.values()), "articles")
|
2019-05-17 18:44:11 +03:00
|
|
|
print()
|
|
|
|
print(" CUTOFF", self.CUTOFF)
|
|
|
|
print(" INPUT_DIM", self.INPUT_DIM)
|
|
|
|
print(" ENTITY_WIDTH", self.ENTITY_WIDTH)
|
|
|
|
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
|
|
|
|
print(" HIDDEN_WIDTH", self.ARTICLE_WIDTH)
|
|
|
|
print(" DROP", self.DROP)
|
|
|
|
print()
|
2019-05-17 02:51:18 +03:00
|
|
|
|
|
|
|
# TODO: proper batches. Currently 1 article at the time
|
|
|
|
article_count = 0
|
|
|
|
for article_id, inst_cluster_set in train_inst.items():
|
2019-05-17 18:44:11 +03:00
|
|
|
try:
|
|
|
|
# if to_print:
|
|
|
|
# print()
|
2019-05-20 12:58:48 +03:00
|
|
|
print(article_count, "Training on article", article_id)
|
2019-05-17 18:44:11 +03:00
|
|
|
article_count += 1
|
|
|
|
article_docs = list()
|
|
|
|
entities = list()
|
|
|
|
golds = list()
|
|
|
|
for inst_cluster in inst_cluster_set:
|
2019-05-20 12:58:48 +03:00
|
|
|
if instance_pos_count < 2: # TODO del
|
2019-05-17 18:44:11 +03:00
|
|
|
article_docs.append(train_doc[article_id])
|
|
|
|
entities.append(train_pos.get(inst_cluster))
|
|
|
|
golds.append(float(1.0))
|
|
|
|
instance_pos_count += 1
|
|
|
|
for neg_entity in train_neg.get(inst_cluster, []):
|
|
|
|
article_docs.append(train_doc[article_id])
|
|
|
|
entities.append(neg_entity)
|
|
|
|
golds.append(float(0.0))
|
|
|
|
instance_neg_count += 1
|
|
|
|
|
2019-05-20 18:20:39 +03:00
|
|
|
for k in range(10):
|
2019-05-17 18:44:11 +03:00
|
|
|
print()
|
|
|
|
print("update", k)
|
|
|
|
print()
|
|
|
|
# print("article docs", article_docs)
|
|
|
|
print("entities", entities)
|
|
|
|
print("golds", golds)
|
|
|
|
print()
|
|
|
|
self.update(article_docs=article_docs, entities=entities, golds=golds)
|
|
|
|
|
|
|
|
# dev eval
|
|
|
|
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter", avg=False)
|
|
|
|
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter_avg", avg=True)
|
|
|
|
except ValueError as e:
|
|
|
|
print("Error in article id", article_id)
|
2019-05-13 18:02:34 +03:00
|
|
|
|
|
|
|
if to_print:
|
2019-05-17 02:51:18 +03:00
|
|
|
print()
|
2019-05-16 19:25:34 +03:00
|
|
|
print("Trained on", instance_pos_count, "/", instance_neg_count, "instances pos/neg")
|
2019-05-13 18:02:34 +03:00
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
print()
|
2019-05-17 18:44:11 +03:00
|
|
|
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post", avg=False)
|
|
|
|
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post_avg", avg=True)
|
2019-05-17 02:51:18 +03:00
|
|
|
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post", avg=False)
|
2019-05-17 18:44:11 +03:00
|
|
|
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post_avg", avg=True)
|
2019-05-17 02:51:18 +03:00
|
|
|
|
|
|
|
def _test_dev(self, instances, pos, neg, doc, print_string, avg=False, calc_random=False):
|
2019-05-16 19:25:34 +03:00
|
|
|
predictions = list()
|
|
|
|
golds = list()
|
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
for article_id, inst_cluster_set in instances.items():
|
2019-05-16 19:25:34 +03:00
|
|
|
for inst_cluster in inst_cluster_set:
|
2019-05-17 02:51:18 +03:00
|
|
|
pos_ex = pos.get(inst_cluster)
|
|
|
|
neg_exs = neg.get(inst_cluster, [])
|
2019-05-16 19:25:34 +03:00
|
|
|
|
|
|
|
article = inst_cluster.split(sep="_")[0]
|
|
|
|
entity_id = inst_cluster.split(sep="_")[1]
|
2019-05-17 02:51:18 +03:00
|
|
|
article_doc = doc[article]
|
2019-05-16 19:25:34 +03:00
|
|
|
|
|
|
|
if calc_random:
|
|
|
|
prediction = self._predict_random(entity=pos_ex)
|
|
|
|
else:
|
|
|
|
prediction = self._predict(article_doc=article_doc, entity=pos_ex, avg=avg)
|
|
|
|
predictions.append(prediction)
|
|
|
|
golds.append(float(1.0))
|
|
|
|
|
|
|
|
for neg_ex in neg_exs:
|
|
|
|
if calc_random:
|
|
|
|
prediction = self._predict_random(entity=neg_ex)
|
|
|
|
else:
|
|
|
|
prediction = self._predict(article_doc=article_doc, entity=neg_ex, avg=avg)
|
|
|
|
predictions.append(prediction)
|
|
|
|
golds.append(float(0.0))
|
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
# TODO: combine with prior probability
|
2019-05-16 19:25:34 +03:00
|
|
|
p, r, f = run_el.evaluate(predictions, golds, to_print=False)
|
2019-05-17 02:51:18 +03:00
|
|
|
if self.PRINT_F:
|
|
|
|
# print("p/r/F", print_string, round(p, 1), round(r, 1), round(f, 1))
|
|
|
|
print("F", print_string, round(f, 1))
|
|
|
|
|
|
|
|
loss, d_scores = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds))
|
|
|
|
if self.PRINT_LOSS:
|
|
|
|
print("loss", print_string, round(loss, 5))
|
|
|
|
|
|
|
|
return loss, p, r, f
|
2019-05-13 15:26:04 +03:00
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
def _predict(self, article_doc, entity, avg=False, apply_threshold=True):
|
|
|
|
if avg:
|
2019-05-17 18:44:11 +03:00
|
|
|
with self.article_encoder.use_params(self.sgd_article.averages) \
|
2019-05-20 18:20:39 +03:00
|
|
|
and self.entity_encoder.use_params(self.sgd_entity.averages):
|
2019-05-17 18:44:11 +03:00
|
|
|
doc_encoding = self.article_encoder([article_doc])[0]
|
|
|
|
entity_encoding = self.entity_encoder([entity])[0]
|
|
|
|
|
|
|
|
else:
|
|
|
|
doc_encoding = self.article_encoder([article_doc])[0]
|
|
|
|
entity_encoding = self.entity_encoder([entity])[0]
|
2019-05-16 19:25:34 +03:00
|
|
|
|
|
|
|
concat_encoding = list(entity_encoding) + list(doc_encoding)
|
|
|
|
np_array = np.asarray([concat_encoding])
|
2019-05-17 18:44:11 +03:00
|
|
|
|
|
|
|
if avg:
|
|
|
|
with self.model.use_params(self.sgd.averages):
|
|
|
|
prediction = self.model(np_array)
|
|
|
|
else:
|
|
|
|
prediction = self.model(np_array)
|
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
if not apply_threshold:
|
|
|
|
return float(prediction)
|
|
|
|
if prediction > self.CUTOFF:
|
|
|
|
return float(1.0)
|
|
|
|
return float(0.0)
|
|
|
|
|
|
|
|
def _predict_random(self, entity, apply_threshold=True):
|
|
|
|
r = random.uniform(0, 1)
|
|
|
|
if not apply_threshold:
|
|
|
|
return r
|
|
|
|
if r > self.CUTOFF:
|
|
|
|
return float(1.0)
|
|
|
|
return float(0.0)
|
|
|
|
|
|
|
|
def _build_cnn(self, hidden_entity_width, hidden_article_width):
|
|
|
|
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
2019-05-17 02:51:18 +03:00
|
|
|
self.entity_encoder = self._encoder(in_width=self.INPUT_DIM, hidden_width=hidden_entity_width)
|
|
|
|
self.article_encoder = self._encoder(in_width=self.INPUT_DIM, hidden_width=hidden_article_width)
|
2019-05-16 19:25:34 +03:00
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
nr_i = hidden_entity_width + hidden_article_width
|
|
|
|
nr_o = self.HIDDEN_WIDTH
|
2019-05-16 19:25:34 +03:00
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
self.model = Affine(nr_o, nr_i) \
|
|
|
|
>> LN(Maxout(nr_o, nr_o)) \
|
|
|
|
>> Affine(1, nr_o) \
|
|
|
|
>> logistic
|
2019-05-16 19:25:34 +03:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _encoder(in_width, hidden_width):
|
2019-05-20 18:20:39 +03:00
|
|
|
conv_depth = 2
|
2019-05-20 12:58:48 +03:00
|
|
|
cnn_maxout_pieces = 3
|
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
with Model.define_operators({">>": chain}):
|
2019-05-20 12:58:48 +03:00
|
|
|
convolution = Residual((ExtractWindow(nW=1) >> LN(Maxout(in_width, in_width * 3, pieces=cnn_maxout_pieces))))
|
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
encoder = SpacyVectors \
|
2019-05-20 12:58:48 +03:00
|
|
|
>> with_flatten(LN(Maxout(in_width, in_width)) >> convolution ** conv_depth, pad=conv_depth) \
|
|
|
|
>> flatten_add_lengths \
|
|
|
|
>> ParametricAttention(in_width)\
|
|
|
|
>> Pooling(mean_pool) \
|
|
|
|
>> Residual(zero_init(Maxout(in_width, in_width))) \
|
|
|
|
>> zero_init(Affine(hidden_width, in_width, drop_factor=0.0))
|
2019-05-16 19:25:34 +03:00
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
# TODO: ReLu instead of LN(Maxout) ?
|
2019-05-17 18:44:11 +03:00
|
|
|
# TODO: more convolutions ?
|
2019-05-20 12:58:48 +03:00
|
|
|
# sum_pool or mean_pool ?
|
2019-05-17 02:51:18 +03:00
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
return encoder
|
|
|
|
|
|
|
|
def _begin_training(self):
|
2019-05-17 18:44:11 +03:00
|
|
|
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
|
|
|
|
self.sgd_entity = create_default_optimizer(self.entity_encoder.ops)
|
2019-05-16 19:25:34 +03:00
|
|
|
self.sgd = create_default_optimizer(self.model.ops)
|
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
@staticmethod
|
|
|
|
def get_loss(predictions, golds):
|
|
|
|
d_scores = (predictions - golds)
|
|
|
|
|
|
|
|
loss = (d_scores ** 2).sum()
|
|
|
|
return loss, d_scores
|
|
|
|
|
2019-05-17 18:44:11 +03:00
|
|
|
def update(self, article_docs, entities, golds, apply_threshold=True):
|
|
|
|
doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=self.DROP)
|
|
|
|
print("doc_encodings", len(doc_encodings), doc_encodings)
|
2019-05-20 12:58:48 +03:00
|
|
|
|
2019-05-20 18:20:39 +03:00
|
|
|
entity_encodings, bp_entity = self.entity_encoder.begin_update(entities, drop=self.DROP)
|
2019-05-17 18:44:11 +03:00
|
|
|
print("entity_encodings", len(entity_encodings), entity_encodings)
|
2019-05-20 12:58:48 +03:00
|
|
|
|
|
|
|
concat_encodings = [list(entity_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
|
|
|
|
# print("concat_encodings", len(concat_encodings), concat_encodings)
|
2019-05-17 18:44:11 +03:00
|
|
|
|
|
|
|
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
|
2019-05-16 19:25:34 +03:00
|
|
|
predictions = self.model.ops.flatten(predictions)
|
2019-05-20 12:58:48 +03:00
|
|
|
print("predictions", predictions)
|
2019-05-16 19:25:34 +03:00
|
|
|
golds = self.model.ops.asarray(golds)
|
|
|
|
|
2019-05-17 02:51:18 +03:00
|
|
|
loss, d_scores = self.get_loss(predictions, golds)
|
2019-05-16 19:25:34 +03:00
|
|
|
|
2019-05-17 18:44:11 +03:00
|
|
|
if self.PRINT_LOSS and self.PRINT_TRAIN:
|
|
|
|
print("loss train", round(loss, 5))
|
2019-05-16 19:25:34 +03:00
|
|
|
|
2019-05-17 18:44:11 +03:00
|
|
|
if self.PRINT_F and self.PRINT_TRAIN:
|
|
|
|
predictions_f = [x for x in predictions]
|
|
|
|
if apply_threshold:
|
|
|
|
predictions_f = [1.0 if x > self.CUTOFF else 0.0 for x in predictions_f]
|
|
|
|
p, r, f = run_el.evaluate(predictions_f, golds, to_print=False)
|
|
|
|
print("p/r/F train", round(p, 1), round(r, 1), round(f, 1))
|
2019-05-10 13:53:14 +03:00
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
d_scores = d_scores.reshape((-1, 1))
|
|
|
|
d_scores = d_scores.astype(np.float32)
|
2019-05-20 12:58:48 +03:00
|
|
|
# print("d_scores", d_scores)
|
2019-05-10 13:53:14 +03:00
|
|
|
|
2019-05-16 19:25:34 +03:00
|
|
|
model_gradient = bp_model(d_scores, sgd=self.sgd)
|
2019-05-20 18:20:39 +03:00
|
|
|
print("model_gradient", model_gradient)
|
|
|
|
|
|
|
|
doc_gradient = list()
|
|
|
|
entity_gradient = list()
|
|
|
|
for x in model_gradient:
|
|
|
|
doc_gradient.append(list(x[0:self.ARTICLE_WIDTH]))
|
|
|
|
entity_gradient.append(list(x[self.ARTICLE_WIDTH:]))
|
2019-05-16 19:25:34 +03:00
|
|
|
|
2019-05-20 18:20:39 +03:00
|
|
|
print("doc_gradient", doc_gradient)
|
|
|
|
print("entity_gradient", entity_gradient)
|
2019-05-16 19:25:34 +03:00
|
|
|
|
|
|
|
bp_doc(doc_gradient)
|
2019-05-20 18:20:39 +03:00
|
|
|
bp_entity(entity_gradient)
|
2019-05-16 19:25:34 +03:00
|
|
|
|
2019-05-13 15:26:04 +03:00
|
|
|
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
|
2019-05-09 18:23:19 +03:00
|
|
|
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
|
|
|
|
|
|
|
|
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
|
|
|
|
collect_correct=True,
|
|
|
|
collect_incorrect=True)
|
|
|
|
|
2019-05-13 18:02:34 +03:00
|
|
|
instance_by_doc = dict()
|
2019-05-09 18:23:19 +03:00
|
|
|
local_vectors = list() # TODO: local vectors
|
|
|
|
doc_by_article = dict()
|
2019-05-09 19:11:49 +03:00
|
|
|
pos_entities = dict()
|
|
|
|
neg_entities = dict()
|
2019-05-09 18:23:19 +03:00
|
|
|
|
|
|
|
cnt = 0
|
|
|
|
for f in listdir(training_dir):
|
|
|
|
if not limit or cnt < limit:
|
2019-05-13 15:26:04 +03:00
|
|
|
if dev == run_el.is_dev(f):
|
2019-05-09 18:23:19 +03:00
|
|
|
article_id = f.replace(".txt", "")
|
|
|
|
if cnt % 500 == 0 and to_print:
|
2019-05-13 18:02:34 +03:00
|
|
|
print(datetime.datetime.now(), "processed", cnt, "files in the training dataset")
|
2019-05-09 18:23:19 +03:00
|
|
|
cnt += 1
|
|
|
|
if article_id not in doc_by_article:
|
|
|
|
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
|
|
|
|
text = file.read()
|
|
|
|
doc = self.nlp(text)
|
|
|
|
doc_by_article[article_id] = doc
|
2019-05-13 18:02:34 +03:00
|
|
|
instance_by_doc[article_id] = set()
|
2019-05-07 17:03:42 +03:00
|
|
|
|
2019-05-09 19:11:49 +03:00
|
|
|
for mention, entity_pos in correct_entries[article_id].items():
|
2019-05-07 17:03:42 +03:00
|
|
|
descr = id_to_descr.get(entity_pos)
|
|
|
|
if descr:
|
2019-05-13 18:02:34 +03:00
|
|
|
instance_by_doc[article_id].add(article_id + "_" + mention)
|
2019-05-09 19:11:49 +03:00
|
|
|
doc_descr = self.nlp(descr)
|
2019-05-13 15:26:04 +03:00
|
|
|
doc_descr._.entity_id = entity_pos
|
2019-05-09 19:11:49 +03:00
|
|
|
pos_entities[article_id + "_" + mention] = doc_descr
|
2019-05-07 17:03:42 +03:00
|
|
|
|
2019-05-09 19:11:49 +03:00
|
|
|
for mention, entity_negs in incorrect_entries[article_id].items():
|
2019-05-07 17:03:42 +03:00
|
|
|
for entity_neg in entity_negs:
|
|
|
|
descr = id_to_descr.get(entity_neg)
|
|
|
|
if descr:
|
2019-05-09 19:11:49 +03:00
|
|
|
doc_descr = self.nlp(descr)
|
2019-05-13 15:26:04 +03:00
|
|
|
doc_descr._.entity_id = entity_neg
|
2019-05-09 19:11:49 +03:00
|
|
|
descr_list = neg_entities.get(article_id + "_" + mention, [])
|
|
|
|
descr_list.append(doc_descr)
|
|
|
|
neg_entities[article_id + "_" + mention] = descr_list
|
2019-05-07 17:03:42 +03:00
|
|
|
|
2019-05-09 18:23:19 +03:00
|
|
|
if to_print:
|
|
|
|
print()
|
2019-05-13 18:02:34 +03:00
|
|
|
print("Processed", cnt, "training articles, dev=" + str(dev))
|
2019-05-09 18:23:19 +03:00
|
|
|
print()
|
2019-05-13 18:02:34 +03:00
|
|
|
return instance_by_doc, pos_entities, neg_entities, doc_by_article
|