spaCy/examples/pipeline/wiki_entity_linking/train_el.py

360 lines
15 KiB
Python
Raw Normal View History

# coding: utf-8
from __future__ import unicode_literals
import os
import datetime
from os import listdir
import numpy as np
import random
from thinc.neural._classes.convolution import ExtractWindow
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, logistic
2019-05-20 12:58:48 +03:00
from thinc.api import chain, concatenate, flatten_add_lengths, clone, with_flatten
from thinc.v2v import Model, Maxout, Affine
2019-05-20 12:58:48 +03:00
from thinc.t2v import Pooling, mean_pool, sum_pool
2019-05-14 09:37:52 +03:00
from thinc.t2t import ParametricAttention
from thinc.misc import Residual
from thinc.misc import LayerNorm as LN
2019-05-13 15:26:04 +03:00
from spacy.tokens import Doc
""" TODO: this code needs to be implemented in pipes.pyx"""
class EL_Model:
PRINT_LOSS = False
PRINT_F = True
2019-05-17 18:44:11 +03:00
PRINT_TRAIN = True
2019-05-15 03:23:08 +03:00
EPS = 0.0000000005
CUTOFF = 0.5
INPUT_DIM = 300
2019-05-20 18:20:39 +03:00
ENTITY_WIDTH = 4 # 64
ARTICLE_WIDTH = 8 # 128
HIDDEN_WIDTH = 6 # 64
2019-05-17 18:44:11 +03:00
DROP = 0.00
name = "entity_linker"
def __init__(self, kb, nlp):
run_el._prepare_pipeline(nlp, kb)
self.nlp = nlp
self.kb = kb
self._build_cnn(hidden_entity_width=self.ENTITY_WIDTH, hidden_article_width=self.ARTICLE_WIDTH)
2019-05-14 09:37:52 +03:00
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
# raise errors instead of runtime warnings in case of int/float overflow
np.seterr(all='raise')
2019-05-13 15:26:04 +03:00
Doc.set_extension("entity_id", default=None)
train_inst, train_pos, train_neg, train_doc = self._get_training_data(training_dir,
entity_descr_output,
False,
trainlimit,
to_print=False)
dev_inst, dev_pos, dev_neg, dev_doc = self._get_training_data(training_dir,
entity_descr_output,
True,
devlimit,
to_print=False)
self._begin_training()
print()
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_random", calc_random=True)
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_random", calc_random=True)
print()
2019-05-20 18:20:39 +03:00
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_pre", avg=False)
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_pre", avg=False)
instance_pos_count = 0
instance_neg_count = 0
if to_print:
print()
print("Training on", len(train_inst.values()), "articles")
print("Dev test on", len(dev_inst.values()), "articles")
2019-05-17 18:44:11 +03:00
print()
print(" CUTOFF", self.CUTOFF)
print(" INPUT_DIM", self.INPUT_DIM)
print(" ENTITY_WIDTH", self.ENTITY_WIDTH)
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
print(" HIDDEN_WIDTH", self.ARTICLE_WIDTH)
print(" DROP", self.DROP)
print()
# TODO: proper batches. Currently 1 article at the time
article_count = 0
for article_id, inst_cluster_set in train_inst.items():
2019-05-17 18:44:11 +03:00
try:
# if to_print:
# print()
2019-05-20 12:58:48 +03:00
print(article_count, "Training on article", article_id)
2019-05-17 18:44:11 +03:00
article_count += 1
article_docs = list()
entities = list()
golds = list()
for inst_cluster in inst_cluster_set:
2019-05-20 12:58:48 +03:00
if instance_pos_count < 2: # TODO del
2019-05-17 18:44:11 +03:00
article_docs.append(train_doc[article_id])
entities.append(train_pos.get(inst_cluster))
golds.append(float(1.0))
instance_pos_count += 1
for neg_entity in train_neg.get(inst_cluster, []):
article_docs.append(train_doc[article_id])
entities.append(neg_entity)
golds.append(float(0.0))
instance_neg_count += 1
2019-05-20 18:20:39 +03:00
for k in range(10):
2019-05-17 18:44:11 +03:00
print()
print("update", k)
print()
# print("article docs", article_docs)
print("entities", entities)
print("golds", golds)
print()
self.update(article_docs=article_docs, entities=entities, golds=golds)
# dev eval
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter", avg=False)
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter_avg", avg=True)
except ValueError as e:
print("Error in article id", article_id)
if to_print:
print()
print("Trained on", instance_pos_count, "/", instance_neg_count, "instances pos/neg")
print()
2019-05-17 18:44:11 +03:00
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post", avg=False)
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post_avg", avg=True)
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post", avg=False)
2019-05-17 18:44:11 +03:00
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post_avg", avg=True)
def _test_dev(self, instances, pos, neg, doc, print_string, avg=False, calc_random=False):
predictions = list()
golds = list()
for article_id, inst_cluster_set in instances.items():
for inst_cluster in inst_cluster_set:
pos_ex = pos.get(inst_cluster)
neg_exs = neg.get(inst_cluster, [])
article = inst_cluster.split(sep="_")[0]
entity_id = inst_cluster.split(sep="_")[1]
article_doc = doc[article]
if calc_random:
prediction = self._predict_random(entity=pos_ex)
else:
prediction = self._predict(article_doc=article_doc, entity=pos_ex, avg=avg)
predictions.append(prediction)
golds.append(float(1.0))
for neg_ex in neg_exs:
if calc_random:
prediction = self._predict_random(entity=neg_ex)
else:
prediction = self._predict(article_doc=article_doc, entity=neg_ex, avg=avg)
predictions.append(prediction)
golds.append(float(0.0))
# TODO: combine with prior probability
p, r, f = run_el.evaluate(predictions, golds, to_print=False)
if self.PRINT_F:
# print("p/r/F", print_string, round(p, 1), round(r, 1), round(f, 1))
print("F", print_string, round(f, 1))
loss, d_scores = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds))
if self.PRINT_LOSS:
print("loss", print_string, round(loss, 5))
return loss, p, r, f
2019-05-13 15:26:04 +03:00
def _predict(self, article_doc, entity, avg=False, apply_threshold=True):
if avg:
2019-05-17 18:44:11 +03:00
with self.article_encoder.use_params(self.sgd_article.averages) \
2019-05-20 18:20:39 +03:00
and self.entity_encoder.use_params(self.sgd_entity.averages):
2019-05-17 18:44:11 +03:00
doc_encoding = self.article_encoder([article_doc])[0]
entity_encoding = self.entity_encoder([entity])[0]
else:
doc_encoding = self.article_encoder([article_doc])[0]
entity_encoding = self.entity_encoder([entity])[0]
concat_encoding = list(entity_encoding) + list(doc_encoding)
np_array = np.asarray([concat_encoding])
2019-05-17 18:44:11 +03:00
if avg:
with self.model.use_params(self.sgd.averages):
prediction = self.model(np_array)
else:
prediction = self.model(np_array)
if not apply_threshold:
return float(prediction)
if prediction > self.CUTOFF:
return float(1.0)
return float(0.0)
def _predict_random(self, entity, apply_threshold=True):
r = random.uniform(0, 1)
if not apply_threshold:
return r
if r > self.CUTOFF:
return float(1.0)
return float(0.0)
def _build_cnn(self, hidden_entity_width, hidden_article_width):
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
self.entity_encoder = self._encoder(in_width=self.INPUT_DIM, hidden_width=hidden_entity_width)
self.article_encoder = self._encoder(in_width=self.INPUT_DIM, hidden_width=hidden_article_width)
nr_i = hidden_entity_width + hidden_article_width
nr_o = self.HIDDEN_WIDTH
self.model = Affine(nr_o, nr_i) \
>> LN(Maxout(nr_o, nr_o)) \
>> Affine(1, nr_o) \
>> logistic
@staticmethod
def _encoder(in_width, hidden_width):
2019-05-20 18:20:39 +03:00
conv_depth = 2
2019-05-20 12:58:48 +03:00
cnn_maxout_pieces = 3
with Model.define_operators({">>": chain}):
2019-05-20 12:58:48 +03:00
convolution = Residual((ExtractWindow(nW=1) >> LN(Maxout(in_width, in_width * 3, pieces=cnn_maxout_pieces))))
encoder = SpacyVectors \
2019-05-20 12:58:48 +03:00
>> with_flatten(LN(Maxout(in_width, in_width)) >> convolution ** conv_depth, pad=conv_depth) \
>> flatten_add_lengths \
>> ParametricAttention(in_width)\
>> Pooling(mean_pool) \
>> Residual(zero_init(Maxout(in_width, in_width))) \
>> zero_init(Affine(hidden_width, in_width, drop_factor=0.0))
# TODO: ReLu instead of LN(Maxout) ?
2019-05-17 18:44:11 +03:00
# TODO: more convolutions ?
2019-05-20 12:58:48 +03:00
# sum_pool or mean_pool ?
return encoder
def _begin_training(self):
2019-05-17 18:44:11 +03:00
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
self.sgd_entity = create_default_optimizer(self.entity_encoder.ops)
self.sgd = create_default_optimizer(self.model.ops)
@staticmethod
def get_loss(predictions, golds):
d_scores = (predictions - golds)
loss = (d_scores ** 2).sum()
return loss, d_scores
2019-05-17 18:44:11 +03:00
def update(self, article_docs, entities, golds, apply_threshold=True):
doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=self.DROP)
print("doc_encodings", len(doc_encodings), doc_encodings)
2019-05-20 12:58:48 +03:00
2019-05-20 18:20:39 +03:00
entity_encodings, bp_entity = self.entity_encoder.begin_update(entities, drop=self.DROP)
2019-05-17 18:44:11 +03:00
print("entity_encodings", len(entity_encodings), entity_encodings)
2019-05-20 12:58:48 +03:00
concat_encodings = [list(entity_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
# print("concat_encodings", len(concat_encodings), concat_encodings)
2019-05-17 18:44:11 +03:00
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
predictions = self.model.ops.flatten(predictions)
2019-05-20 12:58:48 +03:00
print("predictions", predictions)
golds = self.model.ops.asarray(golds)
loss, d_scores = self.get_loss(predictions, golds)
2019-05-17 18:44:11 +03:00
if self.PRINT_LOSS and self.PRINT_TRAIN:
print("loss train", round(loss, 5))
2019-05-17 18:44:11 +03:00
if self.PRINT_F and self.PRINT_TRAIN:
predictions_f = [x for x in predictions]
if apply_threshold:
predictions_f = [1.0 if x > self.CUTOFF else 0.0 for x in predictions_f]
p, r, f = run_el.evaluate(predictions_f, golds, to_print=False)
print("p/r/F train", round(p, 1), round(r, 1), round(f, 1))
d_scores = d_scores.reshape((-1, 1))
d_scores = d_scores.astype(np.float32)
2019-05-20 12:58:48 +03:00
# print("d_scores", d_scores)
model_gradient = bp_model(d_scores, sgd=self.sgd)
2019-05-20 18:20:39 +03:00
print("model_gradient", model_gradient)
doc_gradient = list()
entity_gradient = list()
for x in model_gradient:
doc_gradient.append(list(x[0:self.ARTICLE_WIDTH]))
entity_gradient.append(list(x[self.ARTICLE_WIDTH:]))
2019-05-20 18:20:39 +03:00
print("doc_gradient", doc_gradient)
print("entity_gradient", entity_gradient)
bp_doc(doc_gradient)
2019-05-20 18:20:39 +03:00
bp_entity(entity_gradient)
2019-05-13 15:26:04 +03:00
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
collect_correct=True,
collect_incorrect=True)
instance_by_doc = dict()
local_vectors = list() # TODO: local vectors
doc_by_article = dict()
pos_entities = dict()
neg_entities = dict()
cnt = 0
for f in listdir(training_dir):
if not limit or cnt < limit:
2019-05-13 15:26:04 +03:00
if dev == run_el.is_dev(f):
article_id = f.replace(".txt", "")
if cnt % 500 == 0 and to_print:
print(datetime.datetime.now(), "processed", cnt, "files in the training dataset")
cnt += 1
if article_id not in doc_by_article:
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
text = file.read()
doc = self.nlp(text)
doc_by_article[article_id] = doc
instance_by_doc[article_id] = set()
for mention, entity_pos in correct_entries[article_id].items():
descr = id_to_descr.get(entity_pos)
if descr:
instance_by_doc[article_id].add(article_id + "_" + mention)
doc_descr = self.nlp(descr)
2019-05-13 15:26:04 +03:00
doc_descr._.entity_id = entity_pos
pos_entities[article_id + "_" + mention] = doc_descr
for mention, entity_negs in incorrect_entries[article_id].items():
for entity_neg in entity_negs:
descr = id_to_descr.get(entity_neg)
if descr:
doc_descr = self.nlp(descr)
2019-05-13 15:26:04 +03:00
doc_descr._.entity_id = entity_neg
descr_list = neg_entities.get(article_id + "_" + mention, [])
descr_list.append(doc_descr)
neg_entities[article_id + "_" + mention] = descr_list
if to_print:
print()
print("Processed", cnt, "training articles, dev=" + str(dev))
print()
return instance_by_doc, pos_entities, neg_entities, doc_by_article