2019-10-31 17:01:15 +03:00
|
|
|
import pytest
|
2020-02-27 20:42:27 +03:00
|
|
|
from spacy.ml.models.tok2vec import build_Tok2Vec_model
|
2022-05-10 09:24:42 +03:00
|
|
|
from spacy.ml.models.tok2vec import MultiHashEmbed, MaxoutWindowEncoder
|
2020-08-31 13:41:39 +03:00
|
|
|
from spacy.pipeline.tok2vec import Tok2Vec, Tok2VecListener
|
2019-10-31 17:01:15 +03:00
|
|
|
from spacy.vocab import Vocab
|
|
|
|
from spacy.tokens import Doc
|
2020-09-09 11:31:03 +03:00
|
|
|
from spacy.training import Example
|
2020-08-31 13:41:39 +03:00
|
|
|
from spacy import util
|
|
|
|
from spacy.lang.en import English
|
2022-05-10 09:24:42 +03:00
|
|
|
from spacy.util import registry
|
2021-04-22 15:58:29 +03:00
|
|
|
from thinc.api import Config, get_current_ops
|
|
|
|
from numpy.testing import assert_array_equal
|
2020-08-31 13:41:39 +03:00
|
|
|
|
2022-02-21 12:22:36 +03:00
|
|
|
from ..util import get_batch, make_tempdir, add_vecs_to_vocab
|
2021-01-29 07:57:04 +03:00
|
|
|
|
2019-10-31 17:01:15 +03:00
|
|
|
|
|
|
|
def test_empty_doc():
|
|
|
|
width = 128
|
|
|
|
embed_size = 2000
|
|
|
|
vocab = Vocab()
|
|
|
|
doc = Doc(vocab, words=[])
|
2020-07-20 15:49:54 +03:00
|
|
|
tok2vec = build_Tok2Vec_model(
|
2020-07-29 00:06:46 +03:00
|
|
|
MultiHashEmbed(
|
|
|
|
width=width,
|
2020-10-05 20:57:45 +03:00
|
|
|
rows=[embed_size, embed_size, embed_size, embed_size],
|
2020-10-05 16:24:33 +03:00
|
|
|
include_static_vectors=False,
|
|
|
|
attrs=["NORM", "PREFIX", "SUFFIX", "SHAPE"],
|
2020-07-29 00:06:46 +03:00
|
|
|
),
|
2020-08-05 17:00:59 +03:00
|
|
|
MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3),
|
2020-07-20 15:49:54 +03:00
|
|
|
)
|
|
|
|
tok2vec.initialize()
|
2019-10-31 17:01:15 +03:00
|
|
|
vectors, backprop = tok2vec.begin_update([doc])
|
|
|
|
assert len(vectors) == 1
|
|
|
|
assert vectors[0].shape == (0, width)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"batch_size,width,embed_size", [[1, 128, 2000], [2, 128, 2000], [3, 8, 63]]
|
|
|
|
)
|
|
|
|
def test_tok2vec_batch_sizes(batch_size, width, embed_size):
|
|
|
|
batch = get_batch(batch_size)
|
2020-02-27 20:42:27 +03:00
|
|
|
tok2vec = build_Tok2Vec_model(
|
2020-07-29 00:06:46 +03:00
|
|
|
MultiHashEmbed(
|
|
|
|
width=width,
|
2020-10-05 20:57:45 +03:00
|
|
|
rows=[embed_size] * 4,
|
2020-10-05 16:27:06 +03:00
|
|
|
include_static_vectors=False,
|
|
|
|
attrs=["NORM", "PREFIX", "SUFFIX", "SHAPE"],
|
2020-07-29 00:06:46 +03:00
|
|
|
),
|
2020-08-31 13:41:39 +03:00
|
|
|
MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3),
|
2020-02-27 20:42:27 +03:00
|
|
|
)
|
2020-01-29 19:06:46 +03:00
|
|
|
tok2vec.initialize()
|
2019-10-31 17:01:15 +03:00
|
|
|
vectors, backprop = tok2vec.begin_update(batch)
|
|
|
|
assert len(vectors) == len(batch)
|
|
|
|
for doc_vec, doc in zip(vectors, batch):
|
|
|
|
assert doc_vec.shape == (len(doc), width)
|
|
|
|
|
|
|
|
|
2022-05-10 09:24:42 +03:00
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.parametrize("width", [8])
|
2019-10-31 17:01:15 +03:00
|
|
|
@pytest.mark.parametrize(
|
2022-05-10 09:24:42 +03:00
|
|
|
"embed_arch,embed_config",
|
2021-01-29 11:38:09 +03:00
|
|
|
# fmt: off
|
2019-10-31 17:01:15 +03:00
|
|
|
[
|
2022-05-10 09:24:42 +03:00
|
|
|
("spacy.MultiHashEmbed.v1", {"rows": [100, 100], "attrs": ["SHAPE", "LOWER"], "include_static_vectors": False}),
|
|
|
|
("spacy.MultiHashEmbed.v1", {"rows": [100, 20], "attrs": ["ORTH", "PREFIX"], "include_static_vectors": False}),
|
|
|
|
("spacy.CharacterEmbed.v1", {"rows": 100, "nM": 64, "nC": 8, "include_static_vectors": False}),
|
|
|
|
("spacy.CharacterEmbed.v1", {"rows": 100, "nM": 16, "nC": 2, "include_static_vectors": False}),
|
2019-10-31 17:01:15 +03:00
|
|
|
],
|
2021-01-29 11:38:09 +03:00
|
|
|
# fmt: on
|
2019-10-31 17:01:15 +03:00
|
|
|
)
|
2022-05-10 09:24:42 +03:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"tok2vec_arch,encode_arch,encode_config",
|
|
|
|
# fmt: off
|
|
|
|
[
|
|
|
|
("spacy.Tok2Vec.v1", "spacy.MaxoutWindowEncoder.v1", {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
|
|
|
|
("spacy.Tok2Vec.v2", "spacy.MaxoutWindowEncoder.v2", {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
|
|
|
|
("spacy.Tok2Vec.v1", "spacy.MishWindowEncoder.v1", {"window_size": 1, "depth": 6}),
|
|
|
|
("spacy.Tok2Vec.v2", "spacy.MishWindowEncoder.v2", {"window_size": 1, "depth": 6}),
|
|
|
|
],
|
|
|
|
# fmt: on
|
|
|
|
)
|
|
|
|
def test_tok2vec_configs(
|
|
|
|
width, tok2vec_arch, embed_arch, embed_config, encode_arch, encode_config
|
|
|
|
):
|
|
|
|
embed = registry.get("architectures", embed_arch)
|
|
|
|
encode = registry.get("architectures", encode_arch)
|
|
|
|
tok2vec_model = registry.get("architectures", tok2vec_arch)
|
|
|
|
|
2020-07-29 14:47:37 +03:00
|
|
|
embed_config["width"] = width
|
|
|
|
encode_config["width"] = width
|
2019-10-31 17:01:15 +03:00
|
|
|
docs = get_batch(3)
|
2022-05-10 09:24:42 +03:00
|
|
|
tok2vec = tok2vec_model(embed(**embed_config), encode(**encode_config))
|
2020-03-29 20:40:36 +03:00
|
|
|
tok2vec.initialize(docs)
|
2019-10-31 17:01:15 +03:00
|
|
|
vectors, backprop = tok2vec.begin_update(docs)
|
|
|
|
assert len(vectors) == len(docs)
|
2020-07-29 14:47:37 +03:00
|
|
|
assert vectors[0].shape == (len(docs[0]), width)
|
2019-10-31 17:01:15 +03:00
|
|
|
backprop(vectors)
|
2020-08-31 13:41:39 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_tok2vec():
|
|
|
|
# Simple test to initialize the default tok2vec
|
|
|
|
nlp = English()
|
|
|
|
tok2vec = nlp.add_pipe("tok2vec")
|
|
|
|
assert tok2vec.listeners == []
|
2020-09-28 22:35:09 +03:00
|
|
|
nlp.initialize()
|
2020-09-08 23:44:25 +03:00
|
|
|
assert tok2vec.model.get_dim("nO")
|
2020-08-31 13:41:39 +03:00
|
|
|
|
|
|
|
|
|
|
|
cfg_string = """
|
|
|
|
[nlp]
|
|
|
|
lang = "en"
|
|
|
|
pipeline = ["tok2vec","tagger"]
|
|
|
|
|
|
|
|
[components]
|
|
|
|
|
|
|
|
[components.tagger]
|
|
|
|
factory = "tagger"
|
|
|
|
|
|
|
|
[components.tagger.model]
|
2022-03-15 16:15:31 +03:00
|
|
|
@architectures = "spacy.Tagger.v2"
|
2020-08-31 13:41:39 +03:00
|
|
|
nO = null
|
|
|
|
|
|
|
|
[components.tagger.model.tok2vec]
|
|
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
|
|
width = ${components.tok2vec.model.encode.width}
|
|
|
|
|
|
|
|
[components.tok2vec]
|
|
|
|
factory = "tok2vec"
|
|
|
|
|
|
|
|
[components.tok2vec.model]
|
2021-01-07 08:39:27 +03:00
|
|
|
@architectures = "spacy.Tok2Vec.v2"
|
2020-08-31 13:41:39 +03:00
|
|
|
|
|
|
|
[components.tok2vec.model.embed]
|
2020-10-05 20:59:30 +03:00
|
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
2020-08-31 13:41:39 +03:00
|
|
|
width = ${components.tok2vec.model.encode.width}
|
2020-10-05 20:57:45 +03:00
|
|
|
rows = [2000, 1000, 1000, 1000]
|
|
|
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
|
|
|
include_static_vectors = false
|
2020-08-31 13:41:39 +03:00
|
|
|
|
|
|
|
[components.tok2vec.model.encode]
|
2021-01-07 08:39:27 +03:00
|
|
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
2020-08-31 13:41:39 +03:00
|
|
|
width = 96
|
|
|
|
depth = 4
|
|
|
|
window_size = 1
|
|
|
|
maxout_pieces = 3
|
|
|
|
"""
|
|
|
|
|
|
|
|
TRAIN_DATA = [
|
2021-06-28 12:48:00 +03:00
|
|
|
(
|
|
|
|
"I like green eggs",
|
|
|
|
{"tags": ["N", "V", "J", "N"], "cats": {"preference": 1.0, "imperative": 0.0}},
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Eat blue ham",
|
|
|
|
{"tags": ["V", "J", "N"], "cats": {"preference": 0.0, "imperative": 1.0}},
|
|
|
|
),
|
2020-08-31 13:41:39 +03:00
|
|
|
]
|
|
|
|
|
2020-09-04 14:42:33 +03:00
|
|
|
|
2022-02-21 12:22:36 +03:00
|
|
|
@pytest.mark.parametrize("with_vectors", (False, True))
|
|
|
|
def test_tok2vec_listener(with_vectors):
|
2020-08-31 13:41:39 +03:00
|
|
|
orig_config = Config().from_str(cfg_string)
|
2022-02-21 12:22:36 +03:00
|
|
|
orig_config["components"]["tok2vec"]["model"]["embed"][
|
|
|
|
"include_static_vectors"
|
|
|
|
] = with_vectors
|
2020-09-27 23:21:31 +03:00
|
|
|
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
2022-02-21 12:22:36 +03:00
|
|
|
|
|
|
|
if with_vectors:
|
|
|
|
ops = get_current_ops()
|
|
|
|
vectors = [
|
|
|
|
("apple", ops.asarray([1, 2, 3])),
|
|
|
|
("orange", ops.asarray([-1, -2, -3])),
|
|
|
|
("and", ops.asarray([-1, -1, -1])),
|
|
|
|
("juice", ops.asarray([5, 5, 10])),
|
|
|
|
("pie", ops.asarray([7, 6.3, 8.9])),
|
|
|
|
]
|
|
|
|
add_vecs_to_vocab(nlp.vocab, vectors)
|
|
|
|
|
2020-08-31 13:41:39 +03:00
|
|
|
assert nlp.pipe_names == ["tok2vec", "tagger"]
|
|
|
|
tagger = nlp.get_pipe("tagger")
|
|
|
|
tok2vec = nlp.get_pipe("tok2vec")
|
|
|
|
tagger_tok2vec = tagger.model.get_ref("tok2vec")
|
|
|
|
assert isinstance(tok2vec, Tok2Vec)
|
|
|
|
assert isinstance(tagger_tok2vec, Tok2VecListener)
|
|
|
|
train_examples = []
|
|
|
|
for t in TRAIN_DATA:
|
|
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
|
|
for tag in t[1]["tags"]:
|
|
|
|
tagger.add_label(tag)
|
|
|
|
|
|
|
|
# Check that the Tok2Vec component finds it listeners
|
|
|
|
assert tok2vec.listeners == []
|
2020-09-28 22:35:09 +03:00
|
|
|
optimizer = nlp.initialize(lambda: train_examples)
|
2020-08-31 13:41:39 +03:00
|
|
|
assert tok2vec.listeners == [tagger_tok2vec]
|
|
|
|
|
|
|
|
for i in range(5):
|
|
|
|
losses = {}
|
|
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
|
|
|
|
doc = nlp("Running the pipeline as a whole.")
|
|
|
|
doc_tensor = tagger_tok2vec.predict([doc])[0]
|
2021-04-22 15:58:29 +03:00
|
|
|
ops = get_current_ops()
|
|
|
|
assert_array_equal(ops.to_numpy(doc.tensor), ops.to_numpy(doc_tensor))
|
2020-08-31 13:41:39 +03:00
|
|
|
|
2022-02-21 12:22:36 +03:00
|
|
|
# test with empty doc
|
|
|
|
doc = nlp("")
|
|
|
|
|
2020-08-31 13:41:39 +03:00
|
|
|
# TODO: should this warn or error?
|
|
|
|
nlp.select_pipes(disable="tok2vec")
|
|
|
|
assert nlp.pipe_names == ["tagger"]
|
|
|
|
nlp("Running the pipeline with the Tok2Vec component disabled.")
|
2020-09-22 14:54:44 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_tok2vec_listener_callback():
|
|
|
|
orig_config = Config().from_str(cfg_string)
|
2020-09-27 23:21:31 +03:00
|
|
|
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
2020-09-22 14:54:44 +03:00
|
|
|
assert nlp.pipe_names == ["tok2vec", "tagger"]
|
|
|
|
tagger = nlp.get_pipe("tagger")
|
|
|
|
tok2vec = nlp.get_pipe("tok2vec")
|
|
|
|
nlp._link_components()
|
|
|
|
docs = [nlp.make_doc("A random sentence")]
|
|
|
|
tok2vec.model.initialize(X=docs)
|
|
|
|
gold_array = [[1.0 for tag in ["V", "Z"]] for word in docs]
|
|
|
|
label_sample = [tagger.model.ops.asarray(gold_array, dtype="float32")]
|
|
|
|
tagger.model.initialize(X=docs, Y=label_sample)
|
|
|
|
docs = [nlp.make_doc("Another entirely random sentence")]
|
2020-09-22 22:54:52 +03:00
|
|
|
tok2vec.update([Example.from_dict(x, {}) for x in docs])
|
2020-09-22 14:54:44 +03:00
|
|
|
Y, get_dX = tagger.model.begin_update(docs)
|
|
|
|
# assure that the backprop call works (and doesn't hit a 'None' callback)
|
|
|
|
assert get_dX(Y) is not None
|
2021-01-29 07:57:04 +03:00
|
|
|
|
|
|
|
|
2022-09-12 16:36:48 +03:00
|
|
|
def test_tok2vec_listener_overfitting():
|
2022-10-21 12:54:17 +03:00
|
|
|
"""Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components"""
|
2022-09-12 16:36:48 +03:00
|
|
|
orig_config = Config().from_str(cfg_string)
|
|
|
|
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
|
|
|
train_examples = []
|
|
|
|
for t in TRAIN_DATA:
|
|
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
|
|
|
|
for i in range(50):
|
|
|
|
losses = {}
|
|
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses, annotates=["tok2vec"])
|
|
|
|
assert losses["tagger"] < 0.00001
|
|
|
|
|
|
|
|
# test the trained model
|
|
|
|
test_text = "I like blue eggs"
|
|
|
|
doc = nlp(test_text)
|
|
|
|
assert doc[0].tag_ == "N"
|
|
|
|
assert doc[1].tag_ == "V"
|
|
|
|
assert doc[2].tag_ == "J"
|
|
|
|
assert doc[3].tag_ == "N"
|
|
|
|
|
|
|
|
# Also test the results are still the same after IO
|
|
|
|
with make_tempdir() as tmp_dir:
|
|
|
|
nlp.to_disk(tmp_dir)
|
|
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
|
|
doc2 = nlp2(test_text)
|
|
|
|
assert doc2[0].tag_ == "N"
|
|
|
|
assert doc2[1].tag_ == "V"
|
|
|
|
assert doc2[2].tag_ == "J"
|
|
|
|
assert doc2[3].tag_ == "N"
|
|
|
|
|
|
|
|
|
|
|
|
def test_tok2vec_frozen_not_annotating():
|
2022-10-21 12:54:17 +03:00
|
|
|
"""Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating"""
|
2022-09-12 16:36:48 +03:00
|
|
|
orig_config = Config().from_str(cfg_string)
|
|
|
|
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
|
|
|
train_examples = []
|
|
|
|
for t in TRAIN_DATA:
|
|
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
|
|
|
|
for i in range(2):
|
|
|
|
losses = {}
|
2022-10-21 12:54:17 +03:00
|
|
|
with pytest.raises(
|
|
|
|
ValueError, match=r"the tok2vec embedding layer is not updated"
|
|
|
|
):
|
|
|
|
nlp.update(
|
|
|
|
train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"]
|
|
|
|
)
|
2022-09-12 16:36:48 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_tok2vec_frozen_overfitting():
|
2022-10-21 12:54:17 +03:00
|
|
|
"""Test that a pipeline with a frozen & annotating tok2vec can still overfit"""
|
2022-09-12 16:36:48 +03:00
|
|
|
orig_config = Config().from_str(cfg_string)
|
|
|
|
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
|
|
|
train_examples = []
|
|
|
|
for t in TRAIN_DATA:
|
|
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
|
|
|
|
for i in range(100):
|
|
|
|
losses = {}
|
2022-10-21 12:54:17 +03:00
|
|
|
nlp.update(
|
|
|
|
train_examples,
|
|
|
|
sgd=optimizer,
|
|
|
|
losses=losses,
|
|
|
|
exclude=["tok2vec"],
|
|
|
|
annotates=["tok2vec"],
|
|
|
|
)
|
2022-09-12 16:36:48 +03:00
|
|
|
assert losses["tagger"] < 0.0001
|
|
|
|
|
|
|
|
# test the trained model
|
|
|
|
test_text = "I like blue eggs"
|
|
|
|
doc = nlp(test_text)
|
|
|
|
assert doc[0].tag_ == "N"
|
|
|
|
assert doc[1].tag_ == "V"
|
|
|
|
assert doc[2].tag_ == "J"
|
|
|
|
assert doc[3].tag_ == "N"
|
|
|
|
|
|
|
|
# Also test the results are still the same after IO
|
|
|
|
with make_tempdir() as tmp_dir:
|
|
|
|
nlp.to_disk(tmp_dir)
|
|
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
|
|
doc2 = nlp2(test_text)
|
|
|
|
assert doc2[0].tag_ == "N"
|
|
|
|
assert doc2[1].tag_ == "V"
|
|
|
|
assert doc2[2].tag_ == "J"
|
|
|
|
assert doc2[3].tag_ == "N"
|
|
|
|
|
|
|
|
|
2021-01-29 07:57:04 +03:00
|
|
|
def test_replace_listeners():
|
|
|
|
orig_config = Config().from_str(cfg_string)
|
|
|
|
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
|
|
|
examples = [Example.from_dict(nlp.make_doc("x y"), {"tags": ["V", "Z"]})]
|
|
|
|
nlp.initialize(lambda: examples)
|
|
|
|
tok2vec = nlp.get_pipe("tok2vec")
|
|
|
|
tagger = nlp.get_pipe("tagger")
|
|
|
|
assert isinstance(tagger.model.layers[0], Tok2VecListener)
|
|
|
|
assert tok2vec.listener_map["tagger"][0] == tagger.model.layers[0]
|
2021-01-29 11:38:09 +03:00
|
|
|
assert (
|
|
|
|
nlp.config["components"]["tok2vec"]["model"]["@architectures"]
|
|
|
|
== "spacy.Tok2Vec.v2"
|
|
|
|
)
|
|
|
|
assert (
|
|
|
|
nlp.config["components"]["tagger"]["model"]["tok2vec"]["@architectures"]
|
|
|
|
== "spacy.Tok2VecListener.v1"
|
|
|
|
)
|
2021-01-29 07:57:04 +03:00
|
|
|
nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec"])
|
|
|
|
assert not isinstance(tagger.model.layers[0], Tok2VecListener)
|
|
|
|
t2v_cfg = nlp.config["components"]["tok2vec"]["model"]
|
|
|
|
assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2"
|
|
|
|
assert nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
nlp.replace_listeners("invalid", "tagger", ["model.tok2vec"])
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
nlp.replace_listeners("tok2vec", "parser", ["model.tok2vec"])
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
nlp.replace_listeners("tok2vec", "tagger", ["model.yolo"])
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec", "model.yolo"])
|
2021-05-12 12:32:22 +03:00
|
|
|
# attempt training with the new pipeline
|
|
|
|
optimizer = nlp.initialize(lambda: examples)
|
|
|
|
for i in range(2):
|
|
|
|
losses = {}
|
|
|
|
nlp.update(examples, sgd=optimizer, losses=losses)
|
|
|
|
assert losses["tok2vec"] == 0.0
|
|
|
|
assert losses["tagger"] > 0.0
|
2021-01-29 11:38:09 +03:00
|
|
|
|
|
|
|
|
|
|
|
cfg_string_multi = """
|
|
|
|
[nlp]
|
|
|
|
lang = "en"
|
|
|
|
pipeline = ["tok2vec","tagger", "ner"]
|
|
|
|
|
|
|
|
[components]
|
|
|
|
|
|
|
|
[components.tagger]
|
|
|
|
factory = "tagger"
|
|
|
|
|
|
|
|
[components.tagger.model]
|
2022-03-15 16:15:31 +03:00
|
|
|
@architectures = "spacy.Tagger.v2"
|
2021-01-29 11:38:09 +03:00
|
|
|
nO = null
|
|
|
|
|
|
|
|
[components.tagger.model.tok2vec]
|
|
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
|
|
width = ${components.tok2vec.model.encode.width}
|
|
|
|
|
|
|
|
[components.ner]
|
|
|
|
factory = "ner"
|
|
|
|
|
|
|
|
[components.ner.model]
|
Merge the parser refactor into `v4` (#10940)
* Try to fix doc.copy
* Set dev version
* Make vocab always own lexemes
* Change version
* Add SpanGroups.copy method
* Fix set_annotations during Parser.update
* Fix dict proxy copy
* Upd version
* Fix copying SpanGroups
* Fix set_annotations in parser.update
* Fix parser set_annotations during update
* Revert "Fix parser set_annotations during update"
This reverts commit eb138c89edb306608826dca50619ea8a60de2b14.
* Revert "Fix set_annotations in parser.update"
This reverts commit c6df0eafd0046179c1c9fb7840074edf04e4721d.
* Fix set_annotations during parser update
* Inc version
* Handle final states in get_oracle_sequence
* Inc version
* Try to fix parser training
* Inc version
* Fix
* Inc version
* Fix parser oracle
* Inc version
* Inc version
* Fix transition has_gold
* Inc version
* Try to use real histories, not oracle
* Inc version
* Upd parser
* Inc version
* WIP on rewrite parser
* WIP refactor parser
* New progress on parser model refactor
* Prepare to remove parser_model.pyx
* Convert parser from cdef class
* Delete spacy.ml.parser_model
* Delete _precomputable_affine module
* Wire up tb_framework to new parser model
* Wire up parser model
* Uncython ner.pyx and dep_parser.pyx
* Uncython
* Work on parser model
* Support unseen_classes in parser model
* Support unseen classes in parser
* Cleaner handling of unseen classes
* Work through tests
* Keep working through errors
* Keep working through errors
* Work on parser. 15 tests failing
* Xfail beam stuff. 9 failures
* More xfail. 7 failures
* Xfail. 6 failures
* cleanup
* formatting
* fixes
* pass nO through
* Fix empty doc in update
* Hackishly fix resizing. 3 failures
* Fix redundant test. 2 failures
* Add reference version
* black formatting
* Get tests passing with reference implementation
* Fix missing prints
* Add missing file
* Improve indexing on reference implementation
* Get non-reference forward func working
* Start rigging beam back up
* removing redundant tests, cf #8106
* black formatting
* temporarily xfailing issue 4314
* make flake8 happy again
* mypy fixes
* ensure labels are added upon predict
* cleanup remnants from merge conflicts
* Improve unseen label masking
Two changes to speed up masking by ~10%:
- Use a bool array rather than an array of float32.
- Let the mask indicate whether a label was seen, rather than
unseen. The mask is most frequently used to index scores for
seen labels. However, since the mask marked unseen labels,
this required computing an intermittent flipped mask.
* Write moves costs directly into numpy array (#10163)
This avoids elementwise indexing and the allocation of an additional
array.
Gives a ~15% speed improvement when using batch_by_sequence with size
32.
* Temporarily disable ner and rehearse tests
Until rehearse is implemented again in the refactored parser.
* Fix loss serialization issue (#10600)
* Fix loss serialization issue
Serialization of a model fails with:
TypeError: array(738.3855, dtype=float32) is not JSON serializable
Fix this using float conversion.
* Disable CI steps that require spacy.TransitionBasedParser.v2
After finishing the refactor, TransitionBasedParser.v2 should be
provided for backwards compat.
* Add back support for beam parsing to the refactored parser (#10633)
* Add back support for beam parsing
Beam parsing was already implemented as part of the `BeamBatch` class.
This change makes its counterpart `GreedyBatch`. Both classes are hooked
up in `TransitionModel`, selecting `GreedyBatch` when the beam size is
one, or `BeamBatch` otherwise.
* Use kwarg for beam width
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Avoid implicit default for beam_width and beam_density
* Parser.{beam,greedy}_parse: ensure labels are added
* Remove 'deprecated' comments
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Parser `StateC` optimizations (#10746)
* `StateC`: Optimizations
Avoid GIL acquisition in `__init__`
Increase default buffer capacities on init
Reduce C++ exception overhead
* Fix typo
* Replace `set::count` with `set::find`
* Add exception attribute to c'tor
* Remove unused import
* Use a power-of-two value for initial capacity
Use default-insert to init `_heads` and `_unshiftable`
* Merge `cdef` variable declarations and assignments
* Vectorize `example.get_aligned_parses` (#10789)
* `example`: Vectorize `get_aligned_parse`
Rename `numpy` import
* Convert aligned array to lists before returning
* Revert import renaming
* Elide slice arguments when selecting the entire range
* Tagger/morphologizer alignment performance optimizations (#10798)
* `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__`
* `AlignmentArray`: Use native list as staging buffer for offset calculation
* `example`: Vectorize `get_aligned`
* Hoist inner functions out of `get_aligned`
* Replace inline `if..else` clause in assignment statement
* `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays
* `example`: Replace array unique value check with `groupby`
* `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized`
Simplify `_get_aligned_non_vectorized`
* `util`: Update `all_equal` docstring
* Explicitly use `int32_t*`
* Restore C CPU inference in the refactored parser (#10747)
* Bring back the C parsing model
The C parsing model is used for CPU inference and is still faster for
CPU inference than the forward pass of the Thinc model.
* Use C sgemm provided by the Ops implementation
* Make tb_framework module Cython, merge in C forward implementation
* TransitionModel: raise in backprop returned from forward_cpu
* Re-enable greedy parse test
* Return transition scores when forward_cpu is used
* Apply suggestions from code review
Import `Model` from `thinc.api`
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Use relative imports in tb_framework
* Don't assume a default for beam_width
* We don't have a direct dependency on BLIS anymore
* Rename forwards to _forward_{fallback,greedy_cpu}
* Require thinc >=8.1.0,<8.2.0
* tb_framework: clean up imports
* Fix return type of _get_seen_mask
* Move up _forward_greedy_cpu
* Style fixes.
* Lower thinc lowerbound to 8.1.0.dev0
* Formatting fix
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Reimplement parser rehearsal function (#10878)
* Reimplement parser rehearsal function
Before the parser refactor, rehearsal was driven by a loop in the
`rehearse` method itself. For each parsing step, the loops would:
1. Get the predictions of the teacher.
2. Get the predictions and backprop function of the student.
3. Compute the loss and backprop into the student.
4. Move the teacher and student forward with the predictions of
the student.
In the refactored parser, we cannot perform search stepwise rehearsal
anymore, since the model now predicts all parsing steps at once.
Therefore, rehearsal is performed in the following steps:
1. Get the predictions of all parsing steps from the student, along
with its backprop function.
2. Get the predictions from the teacher, but use the predictions of
the student to advance the parser while doing so.
3. Compute the loss and backprop into the student.
To support the second step a new method, `advance_with_actions` is
added to `GreedyBatch`, which performs the provided parsing steps.
* tb_framework: wrap upper_W and upper_b in Linear
Thinc's Optimizer cannot handle resizing of existing parameters. Until
it does, we work around this by wrapping the weights/biases of the upper
layer of the parser model in Linear. When the upper layer is resized, we
copy over the existing parameters into a new Linear instance. This does
not trigger an error in Optimizer, because it sees the resized layer as
a new set of parameters.
* Add test for TransitionSystem.apply_actions
* Better FIXME marker
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
* Fixes from Madeesh
* Apply suggestions from Sofie
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Remove useless assignment
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Rename some identifiers in the parser refactor (#10935)
* Rename _parseC to _parse_batch
* tb_framework: prefix many auxiliary functions with underscore
To clearly state the intent that they are private.
* Rename `lower` to `hidden`, `upper` to `output`
* Parser slow test fixup
We don't have TransitionBasedParser.{v1,v2} until we bring it back as a
legacy option.
* Remove last vestiges of PrecomputableAffine
This does not exist anymore as a separate layer.
* ner: re-enable sentence boundary checks
* Re-enable test that works now.
* test_ner: make loss test more strict again
* Remove commented line
* Re-enable some more beam parser tests
* Remove unused _forward_reference function
* Update for CBlas changes in Thinc 8.1.0.dev2
Bump thinc dependency to 8.1.0.dev3.
* Remove references to spacy.TransitionBasedParser.{v1,v2}
Since they will not be offered starting with spaCy v4.
* `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas`
* dont use get_array_module (#11056) (#11293)
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317)
* `search`: Move from `thinc.extra.search`
Fix NPE in `Beam.__dealloc__`
* `pytest`: Add support for executing Cython tests
Move `search` tests from thinc and patch them to run with `pytest`
* `mypy` fix
* Update comment
* `conftest`: Expose `register_cython_tests`
* Remove unused import
* Move `argmax` impls to new `_parser_utils` Cython module (#11410)
* Parser does not have to be a cdef class anymore
This also fixes validation of the initialization schema.
* Add back spacy.TransitionBasedParser.v2
* Fix a rename that was missed in #10878.
So that rehearsal tests pass.
* Remove module from setup.py that got added during the merge
* Bring back support for `update_with_oracle_cut_size` (#12086)
* Bring back support for `update_with_oracle_cut_size`
This option was available in the pre-refactor parser, but was never
implemented in the refactored parser. This option cuts transition
sequences that are longer than `update_with_oracle_cut` size into
separate sequences that have at most `update_with_oracle_cut`
transitions. The oracle (gold standard) transition sequence is used to
determine the cuts and the initial states for the additional sequences.
Applying this cut makes the batches more homogeneous in the transition
sequence lengths, making forward passes (and as a consequence training)
much faster.
Training time 1000 steps on de_core_news_lg:
- Before this change: 149s
- After this change: 68s
- Pre-refactor parser: 81s
* Fix a rename that was missed in #10878.
So that rehearsal tests pass.
* Apply suggestions from @shadeMe
* Use chained conditional
* Test with update_with_oracle_cut_size={0, 1, 5, 100}
And fix a git that occurs with a cut size of 1.
* Fix up some merge fall out
* Update parser distillation for the refactor
In the old parser, we'd iterate over the transitions in the distill
function and compute the loss/gradients on the go. In the refactored
parser, we first let the student model parse the inputs. Then we'll let
the teacher compute the transition probabilities of the states in the
student's transition sequence. We can then compute the gradients of the
student given the teacher.
* Add back spacy.TransitionBasedParser.v1 references
- Accordion in the architecture docs.
- Test in test_parse, but disabled until we have a spacy-legacy release.
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: kadarakos <kadar.akos@gmail.com>
2023-01-18 13:27:45 +03:00
|
|
|
@architectures = "spacy.TransitionBasedParser.v3"
|
2021-01-29 11:38:09 +03:00
|
|
|
|
|
|
|
[components.ner.model.tok2vec]
|
|
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
|
|
width = ${components.tok2vec.model.encode.width}
|
|
|
|
|
|
|
|
[components.tok2vec]
|
|
|
|
factory = "tok2vec"
|
|
|
|
|
|
|
|
[components.tok2vec.model]
|
|
|
|
@architectures = "spacy.Tok2Vec.v2"
|
|
|
|
|
|
|
|
[components.tok2vec.model.embed]
|
|
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
|
|
width = ${components.tok2vec.model.encode.width}
|
|
|
|
rows = [2000, 1000, 1000, 1000]
|
|
|
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
|
|
|
include_static_vectors = false
|
|
|
|
|
|
|
|
[components.tok2vec.model.encode]
|
|
|
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
|
|
|
width = 96
|
|
|
|
depth = 4
|
|
|
|
window_size = 1
|
|
|
|
maxout_pieces = 3
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def test_replace_listeners_from_config():
|
|
|
|
orig_config = Config().from_str(cfg_string_multi)
|
|
|
|
nlp = util.load_model_from_config(orig_config, auto_fill=True)
|
|
|
|
annots = {"tags": ["V", "Z"], "entities": [(0, 1, "A"), (1, 2, "B")]}
|
|
|
|
examples = [Example.from_dict(nlp.make_doc("x y"), annots)]
|
|
|
|
nlp.initialize(lambda: examples)
|
|
|
|
tok2vec = nlp.get_pipe("tok2vec")
|
|
|
|
tagger = nlp.get_pipe("tagger")
|
|
|
|
ner = nlp.get_pipe("ner")
|
|
|
|
assert tok2vec.listening_components == ["tagger", "ner"]
|
|
|
|
assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk())
|
|
|
|
assert any(isinstance(node, Tok2VecListener) for node in tagger.model.walk())
|
|
|
|
with make_tempdir() as dir_path:
|
|
|
|
nlp.to_disk(dir_path)
|
|
|
|
base_model = str(dir_path)
|
|
|
|
new_config = {
|
|
|
|
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
|
|
|
|
"components": {
|
|
|
|
"tok2vec": {"source": base_model},
|
|
|
|
"tagger": {
|
|
|
|
"source": base_model,
|
|
|
|
"replace_listeners": ["model.tok2vec"],
|
|
|
|
},
|
|
|
|
"ner": {"source": base_model},
|
|
|
|
},
|
|
|
|
}
|
|
|
|
new_nlp = util.load_model_from_config(new_config, auto_fill=True)
|
|
|
|
new_nlp.initialize(lambda: examples)
|
|
|
|
tok2vec = new_nlp.get_pipe("tok2vec")
|
|
|
|
tagger = new_nlp.get_pipe("tagger")
|
|
|
|
ner = new_nlp.get_pipe("ner")
|
|
|
|
assert tok2vec.listening_components == ["ner"]
|
|
|
|
assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk())
|
|
|
|
assert not any(isinstance(node, Tok2VecListener) for node in tagger.model.walk())
|
|
|
|
t2v_cfg = new_nlp.config["components"]["tok2vec"]["model"]
|
|
|
|
assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2"
|
|
|
|
assert new_nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg
|
|
|
|
assert (
|
|
|
|
new_nlp.config["components"]["ner"]["model"]["tok2vec"]["@architectures"]
|
|
|
|
== "spacy.Tok2VecListener.v1"
|
|
|
|
)
|
2021-05-31 11:21:06 +03:00
|
|
|
|
|
|
|
|
|
|
|
cfg_string_multi_textcat = """
|
|
|
|
[nlp]
|
|
|
|
lang = "en"
|
|
|
|
pipeline = ["tok2vec","textcat_multilabel","tagger"]
|
|
|
|
|
|
|
|
[components]
|
|
|
|
|
|
|
|
[components.textcat_multilabel]
|
|
|
|
factory = "textcat_multilabel"
|
|
|
|
|
|
|
|
[components.textcat_multilabel.model]
|
|
|
|
@architectures = "spacy.TextCatEnsemble.v2"
|
|
|
|
nO = null
|
|
|
|
|
|
|
|
[components.textcat_multilabel.model.tok2vec]
|
|
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
|
|
width = ${components.tok2vec.model.encode.width}
|
|
|
|
|
|
|
|
[components.textcat_multilabel.model.linear_model]
|
|
|
|
@architectures = "spacy.TextCatBOW.v1"
|
|
|
|
exclusive_classes = false
|
|
|
|
ngram_size = 1
|
|
|
|
no_output_layer = false
|
|
|
|
|
|
|
|
[components.tagger]
|
|
|
|
factory = "tagger"
|
|
|
|
|
|
|
|
[components.tagger.model]
|
2022-03-15 16:15:31 +03:00
|
|
|
@architectures = "spacy.Tagger.v2"
|
2021-05-31 11:21:06 +03:00
|
|
|
nO = null
|
|
|
|
|
|
|
|
[components.tagger.model.tok2vec]
|
|
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
|
|
width = ${components.tok2vec.model.encode.width}
|
|
|
|
|
|
|
|
[components.tok2vec]
|
|
|
|
factory = "tok2vec"
|
|
|
|
|
|
|
|
[components.tok2vec.model]
|
|
|
|
@architectures = "spacy.Tok2Vec.v2"
|
|
|
|
|
|
|
|
[components.tok2vec.model.embed]
|
|
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
|
|
width = ${components.tok2vec.model.encode.width}
|
|
|
|
rows = [2000, 1000, 1000, 1000]
|
|
|
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
|
|
|
include_static_vectors = false
|
|
|
|
|
|
|
|
[components.tok2vec.model.encode]
|
|
|
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
|
|
|
width = 96
|
|
|
|
depth = 4
|
|
|
|
window_size = 1
|
|
|
|
maxout_pieces = 3
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def test_tok2vec_listeners_textcat():
|
|
|
|
orig_config = Config().from_str(cfg_string_multi_textcat)
|
|
|
|
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
|
|
|
assert nlp.pipe_names == ["tok2vec", "textcat_multilabel", "tagger"]
|
|
|
|
tagger = nlp.get_pipe("tagger")
|
|
|
|
textcat = nlp.get_pipe("textcat_multilabel")
|
|
|
|
tok2vec = nlp.get_pipe("tok2vec")
|
|
|
|
tagger_tok2vec = tagger.model.get_ref("tok2vec")
|
|
|
|
textcat_tok2vec = textcat.model.get_ref("tok2vec")
|
|
|
|
assert isinstance(tok2vec, Tok2Vec)
|
|
|
|
assert isinstance(tagger_tok2vec, Tok2VecListener)
|
|
|
|
assert isinstance(textcat_tok2vec, Tok2VecListener)
|
|
|
|
train_examples = []
|
|
|
|
for t in TRAIN_DATA:
|
|
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
|
|
|
|
|
|
optimizer = nlp.initialize(lambda: train_examples)
|
|
|
|
for i in range(50):
|
|
|
|
losses = {}
|
|
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
|
|
|
|
docs = list(nlp.pipe(["Eat blue ham", "I like green eggs"]))
|
|
|
|
cats0 = docs[0].cats
|
|
|
|
assert cats0["preference"] < 0.1
|
|
|
|
assert cats0["imperative"] > 0.9
|
|
|
|
cats1 = docs[1].cats
|
|
|
|
assert cats1["preference"] > 0.1
|
|
|
|
assert cats1["imperative"] < 0.9
|
2021-06-28 12:48:00 +03:00
|
|
|
assert [t.tag_ for t in docs[0]] == ["V", "J", "N"]
|
|
|
|
assert [t.tag_ for t in docs[1]] == ["N", "V", "J", "N"]
|