spaCy/spacy/language.py

514 lines
20 KiB
Python
Raw Normal View History

# coding: utf8
from __future__ import absolute_import, unicode_literals
from contextlib import contextmanager
import dill
2017-05-18 12:25:19 +03:00
import numpy
from thinc.neural import Model
from thinc.neural.ops import NumpyOps, CupyOps
2017-05-25 04:10:54 +03:00
from thinc.neural.optimizers import Adam, SGD
import random
2017-05-29 14:42:55 +03:00
import ujson
2017-05-29 16:40:45 +03:00
from collections import OrderedDict
2017-05-18 12:25:19 +03:00
from .tokenizer import Tokenizer
from .vocab import Vocab
from .tagger import Tagger
from .lemmatizer import Lemmatizer
from .syntax.parser import get_templates
2017-05-22 13:14:59 +03:00
from .syntax import nonproj
from .pipeline import NeuralDependencyParser, EntityRecognizer
from .pipeline import TokenVectorEncoder, NeuralTagger, NeuralEntityRecognizer
2017-05-22 01:52:30 +03:00
from .pipeline import NeuralLabeller
2017-04-17 02:46:14 +03:00
from .compat import json_dumps
from .attrs import IS_STOP
2017-05-09 00:58:31 +03:00
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from .lang.tokenizer_exceptions import TOKEN_MATCH
from .lang.tag_map import TAG_MAP
2017-05-09 01:58:10 +03:00
from .lang.lex_attrs import LEX_ATTRS
from . import util
2017-05-21 17:07:06 +03:00
from .scorer import Scorer
2016-09-24 21:26:17 +03:00
class BaseDefaults(object):
2016-10-18 17:18:25 +03:00
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(cls.lemma_index, cls.lemma_exc, cls.lemma_rules)
2016-10-18 17:18:25 +03:00
@classmethod
def create_vocab(cls, nlp=None):
lemmatizer = cls.create_lemmatizer(nlp)
lex_attr_getters = dict(cls.lex_attr_getters)
# This is messy, but it's the minimal working fix to Issue #639.
lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words
vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map,
lemmatizer=lemmatizer)
2017-03-15 17:24:40 +03:00
for tag_str, exc in cls.morph_rules.items():
for orth_str, attrs in exc.items():
vocab.morphology.add_special_case(tag_str, orth_str, attrs)
return vocab
2016-12-18 18:54:52 +03:00
2016-10-18 17:18:25 +03:00
@classmethod
def create_tokenizer(cls, nlp=None):
rules = cls.tokenizer_exceptions
token_match = cls.token_match
prefix_search = util.compile_prefix_regex(cls.prefixes).search \
if cls.prefixes else None
suffix_search = util.compile_suffix_regex(cls.suffixes).search \
if cls.suffixes else None
infix_finditer = util.compile_infix_regex(cls.infixes).finditer \
if cls.infixes else None
2016-10-18 17:18:25 +03:00
vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
2016-11-26 14:36:04 +03:00
return Tokenizer(vocab, rules=rules,
2016-10-18 17:18:25 +03:00
prefix_search=prefix_search, suffix_search=suffix_search,
infix_finditer=infix_finditer, token_match=token_match)
@classmethod
def create_tagger(cls, nlp=None, **cfg):
if nlp is None:
return NeuralTagger(cls.create_vocab(nlp), **cfg)
else:
return NeuralTagger(nlp.vocab, **cfg)
@classmethod
def create_parser(cls, nlp=None, **cfg):
if nlp is None:
return NeuralDependencyParser(cls.create_vocab(nlp), **cfg)
else:
return NeuralDependencyParser(nlp.vocab, **cfg)
@classmethod
def create_entity(cls, nlp=None, **cfg):
if nlp is None:
return NeuralEntityRecognizer(cls.create_vocab(nlp), **cfg)
else:
return NeuralEntityRecognizer(nlp.vocab, **cfg)
2016-10-18 17:18:25 +03:00
@classmethod
def create_pipeline(cls, nlp=None):
meta = nlp.meta if nlp is not None else {}
# Resolve strings, like "cnn", "lstm", etc
pipeline = []
for entry in cls.pipeline:
factory = cls.Defaults.factories[entry]
pipeline.append(factory(nlp, **meta.get(entry, {})))
return pipeline
factories = {
'make_doc': create_tokenizer,
2017-05-31 14:42:39 +03:00
'tensorizer': lambda nlp, **cfg: [TokenVectorEncoder(nlp.vocab, **cfg)],
'tagger': lambda nlp, **cfg: [NeuralTagger(nlp.vocab, **cfg)],
'parser': lambda nlp, **cfg: [
NeuralDependencyParser(nlp.vocab, **cfg),
nonproj.deprojectivize],
'ner': lambda nlp, **cfg: [NeuralEntityRecognizer(nlp.vocab, **cfg)],
# Temporary compatibility -- delete after pivot
2017-05-22 02:43:31 +03:00
'token_vectors': lambda nlp, **cfg: [TokenVectorEncoder(nlp.vocab, **cfg)],
'tags': lambda nlp, **cfg: [NeuralTagger(nlp.vocab, **cfg)],
'dependencies': lambda nlp, **cfg: [
NeuralDependencyParser(nlp.vocab, **cfg),
nonproj.deprojectivize,
],
2017-05-22 02:43:31 +03:00
'entities': lambda nlp, **cfg: [NeuralEntityRecognizer(nlp.vocab, **cfg)],
}
2017-05-09 00:58:31 +03:00
token_match = TOKEN_MATCH
prefixes = tuple(TOKENIZER_PREFIXES)
suffixes = tuple(TOKENIZER_SUFFIXES)
infixes = tuple(TOKENIZER_INFIXES)
tag_map = dict(TAG_MAP)
tokenizer_exceptions = {}
parser_features = get_templates('parser')
entity_features = get_templates('ner')
2016-10-18 17:18:25 +03:00
tagger_features = Tagger.feature_templates # TODO -- fix this
2016-09-24 21:26:17 +03:00
stop_words = set()
2016-12-18 17:50:09 +03:00
lemma_rules = {}
lemma_exc = {}
lemma_index = {}
2017-03-15 17:24:40 +03:00
morph_rules = {}
2017-05-09 01:58:10 +03:00
lex_attr_getters = LEX_ATTRS
syntax_iterators = {}
2015-09-14 10:48:51 +03:00
class Language(object):
"""A text-processing pipeline. Usually you'll load this once per process,
and pass the instance around your application.
Defaults (class): Settings, data and factory methods for creating the `nlp`
object and processing pipeline.
lang (unicode): Two-letter language ID, i.e. ISO code.
"""
2016-09-24 21:26:17 +03:00
Defaults = BaseDefaults
lang = None
2015-08-25 16:37:17 +03:00
2017-05-29 21:43:48 +03:00
def __init__(self, vocab=True, make_doc=True, pipeline=None, meta={}, **kwargs):
"""Initialise a Language object.
vocab (Vocab): A `Vocab` object. If `True`, a vocab is created via
`Language.Defaults.create_vocab`.
make_doc (callable): A function that takes text and returns a `Doc`
object. Usually a `Tokenizer`.
pipeline (list): A list of annotation processes or IDs of annotation,
processes, e.g. a `Tagger` object, or `'tagger'`. IDs are looked
up in `Language.Defaults.factories`.
meta (dict): Custom meta data for the Language class. Is written to by
models to add model meta data.
RETURNS (Language): The newly constructed object.
"""
self.meta = dict(meta)
if vocab is True:
factory = self.Defaults.create_vocab
vocab = factory(self, **meta.get('vocab', {}))
self.vocab = vocab
if make_doc is True:
factory = self.Defaults.create_tokenizer
make_doc = factory(self, **meta.get('tokenizer', {}))
2017-05-29 16:40:45 +03:00
self.tokenizer = make_doc
if pipeline is True:
self.pipeline = self.Defaults.create_pipeline(self)
elif pipeline:
self.pipeline = list(pipeline)
# Resolve strings, like "cnn", "lstm", etc
for i, entry in enumerate(self.pipeline):
if entry in self.Defaults.factories:
factory = self.Defaults.factories[entry]
self.pipeline[i] = factory(self, **meta.get(entry, {}))
else:
self.pipeline = []
2017-05-22 02:43:31 +03:00
flat_list = []
for pipe in self.pipeline:
if isinstance(pipe, list):
flat_list.extend(pipe)
else:
flat_list.append(pipe)
self.pipeline = flat_list
# Conveniences to access pipeline components
@property
def tensorizer(self):
return self.get_component('tensorizer')
@property
def tagger(self):
return self.get_component('tagger')
@property
def parser(self):
return self.get_component('parser')
@property
def entity(self):
return self.get_component('ner')
@property
def matcher(self):
return self.get_component('matcher')
def get_component(self, name):
if self.pipeline in (True, None):
return None
for proc in self.pipeline:
if hasattr(proc, 'name') and proc.name.endswith(name):
return proc
return None
def __call__(self, text, disable=[]):
2017-05-21 21:46:23 +03:00
"""'Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
2015-08-25 16:37:17 +03:00
is preserved.
2016-12-18 18:54:52 +03:00
text (unicode): The text to be processed.
disable (list): Names of the pipeline components to disable.
RETURNS (Doc): A container for accessing the annotations.
2016-11-01 14:25:36 +03:00
EXAMPLE:
2016-11-01 14:25:36 +03:00
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].text, tokens[0].head.tag_
2016-11-01 14:25:36 +03:00
('An', 'NN')
2015-08-25 16:37:17 +03:00
"""
doc = self.make_doc(text)
for proc in self.pipeline:
name = getattr(proc, 'name', None)
if name in disable:
continue
2017-05-28 16:11:58 +03:00
doc = proc(doc)
return doc
2015-08-25 16:37:17 +03:00
2017-05-29 16:40:45 +03:00
def make_doc(self, text):
return self.tokenizer(text)
2017-05-25 04:10:54 +03:00
def update(self, docs, golds, drop=0., sgd=None, losses=None):
"""Update the models in the pipeline.
docs (iterable): A batch of `Doc` objects.
golds (iterable): A batch of `GoldParse` objects.
drop (float): The droput rate.
sgd (callable): An optimizer.
RETURNS (dict): Results from the update.
EXAMPLE:
>>> with nlp.begin_training(gold, use_gpu=True) as (trainer, optimizer):
>>> for epoch in trainer.epochs(gold):
>>> for docs, golds in epoch:
>>> state = nlp.update(docs, golds, sgd=optimizer)
"""
tok2vec = self.pipeline[0]
feats = tok2vec.doc2feats(docs)
2017-05-25 04:10:54 +03:00
grads = {}
def get_grads(W, dW, key=None):
grads[key] = (W, dW)
pipes = list(self.pipeline[1:])
random.shuffle(pipes)
for proc in pipes:
2017-05-22 02:43:31 +03:00
if not hasattr(proc, 'update'):
continue
tokvecses, bp_tokvecses = tok2vec.model.begin_update(feats, drop=drop)
2017-05-25 04:10:54 +03:00
d_tokvecses = proc.update((docs, tokvecses), golds,
drop=drop, sgd=get_grads, losses=losses)
if d_tokvecses is not None:
bp_tokvecses(d_tokvecses, sgd=sgd)
2017-05-25 04:10:54 +03:00
for key, (W, dW) in grads.items():
sgd(W, dW, key=key)
# Clear the tensor variable, to free GPU memory.
# If we don't do this, the memory leak gets pretty
# bad, because we may be holding part of a batch.
2017-05-21 17:07:06 +03:00
for doc in docs:
doc.tensor = None
2017-05-21 17:07:06 +03:00
def preprocess_gold(self, docs_golds):
"""Can be called before training to pre-process gold data. By default,
it handles nonprojectivity and adds missing tags to the tag map.
docs_golds (iterable): Tuples of `Doc` and `GoldParse` objects.
YIELDS (tuple): Tuples of preprocessed `Doc` and `GoldParse` objects.
"""
2017-05-21 17:07:06 +03:00
for proc in self.pipeline:
if hasattr(proc, 'preprocess_gold'):
docs_golds = proc.preprocess_gold(docs_golds)
for doc, gold in docs_golds:
yield doc, gold
2017-05-22 01:52:30 +03:00
def begin_training(self, get_gold_tuples, **cfg):
"""Allocate models, pre-process training data and acquire a trainer and
optimizer. Used as a contextmanager.
gold_tuples (iterable): Gold-standard training data.
**cfg: Config parameters.
YIELDS (tuple): A trainer and an optimizer.
EXAMPLE:
>>> with nlp.begin_training(gold, use_gpu=True) as (trainer, optimizer):
>>> for epoch in trainer.epochs(gold):
>>> for docs, golds in epoch:
>>> state = nlp.update(docs, golds, sgd=optimizer)
"""
2017-06-05 04:18:54 +03:00
if self.parser:
self.pipeline.append(NeuralLabeller(self.vocab))
# Populate vocab
2017-05-21 17:07:06 +03:00
for _, annots_brackets in get_gold_tuples():
for annots, _ in annots_brackets:
for word in annots[1]:
_ = self.vocab[word]
contexts = []
2017-06-04 00:10:23 +03:00
if cfg.get('device', -1) >= 0:
import cupy.cuda.device
device = cupy.cuda.device.Device(cfg['device'])
device.use()
2017-05-18 12:25:19 +03:00
Model.ops = CupyOps()
Model.Ops = CupyOps
2017-06-04 00:10:23 +03:00
else:
device = None
for proc in self.pipeline:
if hasattr(proc, 'begin_training'):
2017-05-21 17:07:06 +03:00
context = proc.begin_training(get_gold_tuples(),
pipeline=self.pipeline)
contexts.append(context)
2017-05-25 19:19:26 +03:00
learn_rate = util.env_opt('learn_rate', 0.001)
beta1 = util.env_opt('optimizer_B1', 0.9)
beta2 = util.env_opt('optimizer_B2', 0.999)
eps = util.env_opt('optimizer_eps', 1e-08)
L2 = util.env_opt('L2_penalty', 1e-6)
max_grad_norm = util.env_opt('grad_norm_clip', 1.)
optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
beta2=beta2, eps=eps)
optimizer.max_grad_norm = max_grad_norm
2017-06-04 00:10:23 +03:00
optimizer.device = device
2017-05-21 17:07:06 +03:00
return optimizer
def evaluate(self, docs_golds):
docs, golds = zip(*docs_golds)
scorer = Scorer()
2017-06-03 21:31:33 +03:00
for doc, gold in zip(self.pipe(docs, batch_size=32), golds):
2017-05-21 17:07:06 +03:00
scorer.score(doc, gold)
2017-05-21 21:38:46 +03:00
doc.tensor = None
2017-05-21 17:07:06 +03:00
return scorer
2017-05-18 12:25:19 +03:00
@contextmanager
def use_params(self, params, **cfg):
"""Replace weights of models in the pipeline with those provided in the
params dictionary. Can be used as a contextmanager, in which case,
models go back to their original weights after the block.
params (dict): A dictionary of parameters keyed by model ID.
**cfg: Config parameters.
EXAMPLE:
>>> with nlp.use_params(optimizer.averages):
>>> nlp.to_disk('/tmp/checkpoint')
"""
2017-05-18 16:30:59 +03:00
contexts = [pipe.use_params(params) for pipe
in self.pipeline if hasattr(pipe, 'use_params')]
# TODO: Having trouble with contextlib
# Workaround: these aren't actually context managers atm.
for context in contexts:
try:
next(context)
except StopIteration:
pass
2017-05-18 12:25:19 +03:00
yield
for context in contexts:
try:
2017-05-18 16:30:59 +03:00
next(context)
2017-05-18 12:25:19 +03:00
except StopIteration:
pass
def pipe(self, texts, n_threads=2, batch_size=1000, disable=[]):
"""Process texts as a stream, and yield `Doc` objects in order. Supports
GIL-free multi-threading.
texts (iterator): A sequence of texts to process.
n_threads (int): The number of worker threads to use. If -1, OpenMP will
decide how many to use at run time. Default is 2.
batch_size (int): The number of texts to buffer.
disable (list): Names of the pipeline components to disable.
YIELDS (Doc): Documents in the order of the original text.
EXAMPLE:
>>> texts = [u'One document.', u'...', u'Lots of documents']
>>> for doc in nlp.pipe(texts, batch_size=50, n_threads=4):
>>> assert doc.is_parsed
"""
docs = (self.make_doc(text) for text in texts)
docs = texts
for proc in self.pipeline:
name = getattr(proc, 'name', None)
if name in disable:
continue
if hasattr(proc, 'pipe'):
docs = proc.pipe(docs, n_threads=n_threads, batch_size=batch_size)
else:
2017-05-22 02:43:31 +03:00
# Apply the function, but yield the doc
docs = _pipe(proc, docs)
for doc in docs:
yield doc
2017-05-31 14:42:39 +03:00
def to_disk(self, path, disable=tuple()):
"""Save the current state to a directory. If a model is loaded, this
will include the model.
2017-04-17 02:40:26 +03:00
path (unicode or Path): A path to a directory, which will be created if
it doesn't exist. Paths may be either strings or `Path`-like objects.
2017-05-31 14:42:39 +03:00
disable (list): Names of pipeline components to disable and prevent
from being saved.
EXAMPLE:
>>> nlp.to_disk('/path/to/models')
"""
path = util.ensure_path(path)
2017-05-31 14:42:39 +03:00
serializers = OrderedDict((
('vocab', lambda p: self.vocab.to_disk(p)),
('tokenizer', lambda p: self.tokenizer.to_disk(p, vocab=False)),
('meta.json', lambda p: p.open('w').write(json_dumps(self.meta)))
))
for proc in self.pipeline:
if not hasattr(proc, 'name'):
continue
if proc.name in disable:
continue
if not hasattr(proc, 'to_disk'):
continue
serializers[proc.name] = lambda p, proc=proc: proc.to_disk(p, vocab=False)
util.to_disk(path, serializers, {p: False for p in disable})
def from_disk(self, path, disable=tuple()):
"""Loads state from a directory. Modifies the object in place and
returns it. If the saved `Language` object contains a model, the
model will be loaded.
path (unicode or Path): A path to a directory. Paths may be either
strings or `Path`-like objects.
disable (list): Names of the pipeline components to disable.
RETURNS (Language): The modified `Language` object.
EXAMPLE:
>>> from spacy.language import Language
>>> nlp = Language().from_disk('/path/to/models')
"""
path = util.ensure_path(path)
2017-05-31 14:42:39 +03:00
deserializers = OrderedDict((
('vocab', lambda p: self.vocab.from_disk(p)),
('tokenizer', lambda p: self.tokenizer.from_disk(p, vocab=False)),
('meta.json', lambda p: p.open('w').write(json_dumps(self.meta)))
))
for proc in self.pipeline:
if not hasattr(proc, 'name'):
continue
if proc.name in disable:
continue
if not hasattr(proc, 'to_disk'):
continue
deserializers[proc.name] = lambda p, proc=proc: proc.from_disk(p, vocab=False)
2017-06-01 15:38:35 +03:00
exclude = {p: False for p in disable}
if not (path / 'vocab').exists():
exclude['vocab'] = True
util.from_disk(path, deserializers, exclude)
2017-05-31 14:42:39 +03:00
return self
def to_bytes(self, disable=[]):
"""Serialize the current state to a binary string.
2016-12-18 18:54:52 +03:00
disable (list): Nameds of pipeline components to disable and prevent
from being serialized.
RETURNS (bytes): The serialized form of the `Language` object.
"""
2017-05-29 16:40:45 +03:00
serializers = OrderedDict((
('vocab', lambda: self.vocab.to_bytes()),
('tokenizer', lambda: self.tokenizer.to_bytes(vocab=False)),
('meta', lambda: ujson.dumps(self.meta))
))
for i, proc in enumerate(self.pipeline):
if getattr(proc, 'name', None) in disable:
continue
if not hasattr(proc, 'to_bytes'):
continue
2017-05-29 21:23:28 +03:00
serializers[i] = lambda proc=proc: proc.to_bytes(vocab=False)
2017-05-29 14:38:20 +03:00
return util.to_bytes(serializers, {})
def from_bytes(self, bytes_data, disable=[]):
"""Load state from a binary string.
bytes_data (bytes): The data to load from.
disable (list): Names of the pipeline components to disable.
RETURNS (Language): The `Language` object.
"""
2017-05-29 16:40:45 +03:00
deserializers = OrderedDict((
('vocab', lambda b: self.vocab.from_bytes(b)),
('tokenizer', lambda b: self.tokenizer.from_bytes(b, vocab=False)),
('meta', lambda b: self.meta.update(ujson.loads(b)))
))
for i, proc in enumerate(self.pipeline):
if getattr(proc, 'name', None) in disable:
continue
2017-05-29 16:40:45 +03:00
if not hasattr(proc, 'from_bytes'):
continue
2017-05-29 21:23:28 +03:00
deserializers[i] = lambda b, proc=proc: proc.from_bytes(b, vocab=False)
msg = util.from_bytes(bytes_data, deserializers, {})
return self
2017-05-22 02:43:31 +03:00
2017-05-22 02:43:31 +03:00
def _pipe(func, docs):
for doc in docs:
func(doc)
yield doc