spaCy/spacy/syntax/parser.pyx

547 lines
19 KiB
Cython
Raw Normal View History

# cython: infer_types=True
# cython: profile=True
2014-12-16 14:44:43 +03:00
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
2016-02-05 14:20:42 +03:00
cimport cython.parallel
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
2015-06-02 19:38:41 +03:00
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
2014-12-16 14:44:43 +03:00
import os.path
from os import path
2014-12-16 14:44:43 +03:00
import shutil
import json
import sys
from .nonproj import PseudoProjectivity
import random
2014-12-16 14:44:43 +03:00
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t, idx_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
from thinc.structs cimport NeuralNetC, SparseArrayC, ExampleC
2016-02-01 05:08:42 +03:00
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
from thinc.structs cimport FeatureC
2014-12-16 14:44:43 +03:00
from util import Config
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
2014-12-16 14:44:43 +03:00
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
2014-12-16 14:44:43 +03:00
from ..gold cimport GoldParse
2014-12-16 14:44:43 +03:00
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from ._parse_features cimport *
from .stateclass cimport StateClass
from ._state cimport StateC
2014-12-16 14:44:43 +03:00
2015-04-19 11:31:31 +03:00
DEBUG = False
2014-12-16 14:44:43 +03:00
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
2014-12-17 13:09:29 +03:00
pf = _parse_features
2015-03-24 07:08:35 +03:00
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('neural'):
features = pf.words + pf.tags + pf.labels
slots = [0] * len(pf.words) + [1] * len(pf.tags) + [2] * len(pf.labels)
return ([(f,) for f in features], slots)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
2014-12-16 14:44:43 +03:00
def ParserFactory(transition_system):
return lambda strings, dir_: Parser(strings, dir_, transition_system)
cdef class ParserPerceptron(AveragedPerceptron):
@property
def widths(self):
return (self.extracter.nr_templ,)
def update(self, Example eg):
'''Does regression on negative cost. Sort of cute?'''
self.time += 1
cdef weight_t loss = 0.0
best = eg.best
for clas in range(eg.c.nr_class):
if not eg.c.is_valid[clas]:
continue
if eg.c.scores[clas] < eg.c.scores[best]:
continue
loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2
d_loss = 2 * (-eg.c.costs[clas] - eg.c.scores[clas])
step = d_loss * 0.001
for feat in eg.c.features[:eg.c.nr_feat]:
self.update_weight(feat.key, clas, feat.value * step)
return int(loss)
cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil:
state = <const StateC*>_state
fill_context(eg.atoms, state)
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
cdef class ParserNeuralNet(NeuralNet):
def __init__(self, shape, **kwargs):
vector_widths = [4] * 57
slots = [0, 1, 2, 3] # S0
slots += [4, 5, 6, 7] # S1
slots += [8, 9, 10, 11] # S2
slots += [12, 13, 14, 15] # S3+
slots += [16, 17, 18, 19] # B0
slots += [20, 21, 22, 23] # B1
slots += [24, 25, 26, 27] # B2
slots += [28, 29, 30, 31] # B3+
slots += [32, 33, 34, 35] * 2 # S0l, S0r
slots += [36, 37, 38, 39] * 2 # B0l, B0r
slots += [40, 41, 42, 43] * 2 # S1l, S1r
slots += [44, 45, 46, 47] * 2 # S2l, S2r
slots += [48, 49, 50, 51, 52]
slots += [53, 54, 55, 56]
input_length = sum(vector_widths[slot] for slot in slots)
widths = [input_length] + shape[3:]
NeuralNet.__init__(self, widths, embed=(vector_widths, slots), **kwargs)
@property
def nr_feat(self):
return 2000
cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil:
memset(eg.features, 0, 2000 * sizeof(FeatureC))
state = <const StateC*>_state
fill_context(eg.atoms, state)
feats = eg.features
feats = _add_token(feats, 0, state.S_(0), 1.0)
feats = _add_token(feats, 4, state.S_(1), 1.0)
feats = _add_token(feats, 8, state.S_(2), 1.0)
# Rest of the stack, with exponential decay
for i in range(3, state.stack_depth()):
feats = _add_token(feats, 12, state.S_(i), 1.0 * 0.5**(i-2))
feats = _add_token(feats, 16, state.B_(0), 1.0)
feats = _add_token(feats, 20, state.B_(1), 1.0)
feats = _add_token(feats, 24, state.B_(2), 1.0)
# Rest of the buffer, with exponential decay
for i in range(3, min(8, state.buffer_length())):
feats = _add_token(feats, 28, state.B_(i), 1.0 * 0.5**(i-2))
feats = _add_subtree(feats, 32, state, state.S(0))
feats = _add_subtree(feats, 40, state, state.B(0))
feats = _add_subtree(feats, 48, state, state.S(1))
feats = _add_subtree(feats, 56, state, state.S(2))
feats = _add_pos_bigram(feats, 64, state.S_(0), state.B_(0))
feats = _add_pos_bigram(feats, 65, state.S_(1), state.S_(0))
feats = _add_pos_bigram(feats, 66, state.S_(1), state.B_(0))
feats = _add_pos_bigram(feats, 67, state.S_(0), state.B_(1))
feats = _add_pos_bigram(feats, 68, state.B_(0), state.B_(1))
feats = _add_pos_trigram(feats, 69, state.S_(1), state.S_(0), state.B_(0))
feats = _add_pos_trigram(feats, 70, state.S_(0), state.B_(0), state.B_(1))
feats = _add_pos_trigram(feats, 71, state.S_(0), state.R_(state.S(0), 1),
state.R_(state.S(0), 2))
feats = _add_pos_trigram(feats, 72, state.S_(0), state.L_(state.S(0), 1),
state.L_(state.S(0), 2))
eg.nr_feat = feats - eg.features
cdef inline FeatureC* _add_token(FeatureC* feats,
int slot, const TokenC* token, weight_t value) nogil:
# Word
feats.i = slot
feats.key = token.lex.norm
feats.value = value
feats += 1
# POS tag
feats.i = slot+1
feats.key = token.tag
feats.value = value
feats += 1
# Dependency label
feats.i = slot+2
feats.key = token.dep
feats.value = value
feats += 1
# Word, label, tag
feats.i = slot+3
cdef uint64_t key[3]
key[0] = token.lex.cluster
key[1] = token.tag
key[2] = token.dep
feats.key = hash64(key, sizeof(key), 0)
feats.value = value
feats += 1
return feats
cdef inline FeatureC* _add_subtree(FeatureC* feats, int slot, const StateC* state, int t) nogil:
value = 1.0
for i in range(state.n_R(t)):
feats = _add_token(feats, slot, state.R_(t, i+1), value)
value *= 0.5
slot += 4
value = 1.0
for i in range(state.n_L(t)):
feats = _add_token(feats, slot, state.L_(t, i+1), value)
value *= 0.5
return feats
cdef inline FeatureC* _add_pos_bigram(FeatureC* feat, int slot,
const TokenC* t1, const TokenC* t2) nogil:
cdef uint64_t[2] key
key[0] = t1.tag
key[1] = t2.tag
feat.i = slot
feat.key = hash64(key, sizeof(key), slot)
feat.value = 1.0
return feat+1
cdef inline FeatureC* _add_pos_trigram(FeatureC* feat, int slot,
const TokenC* t1, const TokenC* t2, const TokenC* t3) nogil:
cdef uint64_t[3] key
key[0] = t1.tag
key[1] = t2.tag
key[2] = t3.tag
feat.i = slot
feat.key = hash64(key, sizeof(key), slot)
feat.value = 1.0
return feat+1
cdef class ParserNeuralNetEnsemble(ParserNeuralNet):
def __init__(self, shape, update_step='sgd', eta=0.01, rho=0.0, n=5):
ParserNeuralNet.__init__(self, shape, update_step=update_step, eta=eta, rho=rho)
self._models_c = <NeuralNetC**>self.mem.alloc(sizeof(NeuralNetC*), n)
self._masks = <int**>self.mem.alloc(sizeof(int*), n)
self._models = []
cdef ParserNeuralNet model
threshold = 1.5 / n
self._nr_model = n
for i in range(n):
self._masks[i] = <int*>self.mem.alloc(sizeof(int), self.nr_feat)
for j in range(self.nr_feat):
self._masks[i][j] = random.random() < threshold
# We have to pass our pool here, because the embedding table passes
# it around.
model = ParserNeuralNet(shape, update_step=update_step, eta=eta, rho=rho)
self._models_c[i] = &model.c
self._models.append(model)
property eta:
def __get__(self):
return self._models[0].eta
def __set__(self, weight_t value):
for model in self._models:
model.eta = value
def sparsify_embeddings(self, penalty):
p = 0.0
for model in self._models:
p += model.sparsify_embeddings(penalty)
return p / len(self._models)
cdef void set_scoresC(self, weight_t* scores, const void* _feats,
int nr_feat, int is_sparse) nogil:
nr_class = self.c.widths[self.c.nr_layer-1]
sub_scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
sub_feats = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
feats = <const FeatureC*>_feats
for i in range(self._nr_model):
for j in range(nr_feat):
sub_feats[j] = feats[j]
sub_feats[j].value *= self._masks[i][j]
self.c = self._models_c[i][0]
self.c.weights = self._models_c[i].weights
self.c.gradient = self._models_c[i].gradient
ParserNeuralNet.set_scoresC(self, sub_scores, sub_feats, nr_feat, 1)
for j in range(nr_class):
scores[j] += sub_scores[j]
sub_scores[j] = 0.0
for j in range(nr_class):
scores[j] /= self._nr_model
free(sub_feats)
free(sub_scores)
def update(self, Example eg):
if eg.cost == 0:
return 0.0
loss = 0.0
full_feats = <FeatureC*>calloc(sizeof(FeatureC), eg.nr_feat)
memcpy(full_feats, eg.c.features, sizeof(FeatureC) * eg.nr_feat)
cdef ParserNeuralNet model
for i, model in enumerate(self._models):
for j in range(eg.nr_feat):
eg.c.features[j].value *= self._masks[i][j]
loss += model.update(eg)
memcpy(eg.c.features, full_feats, sizeof(FeatureC) * eg.nr_feat)
free(full_feats)
return loss
def end_training(self):
for model in self._models:
model.end_training()
cdef class Parser:
def __init__(self, StringStore strings, transition_system, model):
self.moves = transition_system
self.model = model
@classmethod
def from_dir(cls, model_dir, strings, transition_system):
if not os.path.exists(model_dir):
print >> sys.stderr, "Warning: No model found at", model_dir
elif not os.path.isdir(model_dir):
print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
cfg = Config.read(model_dir, 'config')
moves = transition_system(strings, cfg.labels)
if cfg.get('model') == 'neural':
shape = [cfg.vector_widths, cfg.slots, cfg.feat_set]
shape.extend(cfg.hidden_layers)
shape.append(moves.n_moves)
if cfg.get('ensemble_size') >= 2:
model = ParserNeuralNetEnsemble(shape, update_step=cfg.update_step,
eta=cfg.eta, rho=cfg.rho,
n=cfg.ensemble_size)
else:
model = ParserNeuralNet(shape, update_step=cfg.update_step,
eta=cfg.eta, rho=cfg.rho)
else:
model = ParserPerceptron(get_templates(cfg.feat_set))
if path.exists(path.join(model_dir, 'model')):
model.load(path.join(model_dir, 'model'))
return cls(strings, moves, model)
@classmethod
def load(cls, pkg_or_str_or_file, vocab):
# TODO
raise NotImplementedError(
"This should be here, but isn't yet =/. Use Parser.from_dir")
def __reduce__(self):
return (Parser, (self.moves.strings, self.moves, self.model), None, None)
def __call__(self, Doc tokens):
cdef int nr_class = self.moves.n_moves
cdef int nr_feat = self.model.nr_feat
2016-01-30 22:27:07 +03:00
with nogil:
self.parseC(tokens.c, tokens.length, nr_feat, nr_class)
2016-01-30 22:27:07 +03:00
# Check for KeyboardInterrupt etc. Untested
PyErr_CheckSignals()
self.moves.finalize_doc(tokens)
2016-01-30 22:27:07 +03:00
def pipe(self, stream, int batch_size=1000, int n_threads=2):
cdef Pool mem = Pool()
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
cdef Doc doc
cdef int i
cdef int nr_class = self.moves.n_moves
cdef int nr_feat = self.model.nr_feat
cdef int status
queue = []
for doc in stream:
doc_ptr[len(queue)] = doc.c
lengths[len(queue)] = doc.length
2016-02-05 21:37:50 +03:00
queue.append(doc)
if len(queue) == batch_size:
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
if status != 0:
with gil:
sent_str = queue[i].text
raise ValueError("Error parsing doc: %s" % sent_str)
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
queue = []
batch_size = len(queue)
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
if status != 0:
with gil:
sent_str = queue[i].text
raise ValueError("Error parsing doc: %s" % sent_str)
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
cdef Example py_eg = Example(nr_class=nr_class, nr_atom=CONTEXT_SIZE, nr_feat=nr_feat,
widths=self.model.widths)
cdef ExampleC* eg = py_eg.c
state = new StateC(tokens, length)
self.moves.initialize_state(state)
cdef int i
while not state.is_final():
self.model.set_featuresC(eg, state)
self.moves.set_valid(eg.is_valid, state)
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat, 1)
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
action = self.moves.c[guess]
if not eg.is_valid[guess]:
return 1
action.do(state, action.label)
py_eg.reset()
self.moves.finalize_state(state)
for i in range(length):
tokens[i] = state._sent[i]
del state
return 0
def train(self, Doc tokens, GoldParse gold):
self.moves.preprocess_gold(gold)
2015-11-03 16:15:14 +03:00
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
self.moves.initialize_state(stcls.c)
cdef Pool mem = Pool()
cdef Example eg = Example(
nr_class=self.moves.n_moves,
widths=self.model.widths,
nr_atom=CONTEXT_SIZE,
nr_feat=self.model.nr_feat)
loss = 0
cdef Transition action
while not stcls.is_final():
self.model.set_featuresC(eg.c, stcls.c)
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat, 1)
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
assert guess >= 0
action = self.moves.c[guess]
action.do(stcls.c, action.label)
loss += self.model.update(eg)
eg.reset()
2015-06-30 15:26:32 +03:00
return loss
def step_through(self, Doc doc):
return StepwiseState(self, doc)
def from_transition_sequence(self, Doc doc, sequence):
with self.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_label(self, label):
for action in self.moves.action_types:
self.moves.add_action(action, label)
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc):
self.parser = parser
self.doc = doc
2015-11-03 16:15:14 +03:00
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
def predict(self):
self.eg.reset()
self.parser.model.set_featuresC(self.eg.c, self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
self.parser.model.set_scoresC(self.eg.c.scores,
self.eg.c.features, self.eg.c.nr_feat, 1)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name):
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
2015-08-10 06:58:43 +03:00
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
2015-08-10 06:58:43 +03:00
mode = i
score = scores[i]
return mode