2016-02-01 10:34:55 +03:00
|
|
|
# cython: infer_types=True
|
2016-07-20 17:28:02 +03:00
|
|
|
# cython: profile=True
|
2014-12-16 14:44:43 +03:00
|
|
|
"""
|
|
|
|
MALT-style dependency parser
|
|
|
|
"""
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
cimport cython
|
2016-02-05 14:20:42 +03:00
|
|
|
cimport cython.parallel
|
2015-06-10 05:20:23 +03:00
|
|
|
|
|
|
|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
2016-01-16 18:18:44 +03:00
|
|
|
from cpython.exc cimport PyErr_CheckSignals
|
2015-06-10 05:20:23 +03:00
|
|
|
|
2014-12-19 01:30:50 +03:00
|
|
|
from libc.stdint cimport uint32_t, uint64_t
|
2015-06-02 19:38:41 +03:00
|
|
|
from libc.string cimport memset, memcpy
|
2016-02-01 10:34:55 +03:00
|
|
|
from libc.stdlib cimport malloc, calloc, free
|
2014-12-16 14:44:43 +03:00
|
|
|
import os.path
|
2014-12-31 11:40:59 +03:00
|
|
|
from os import path
|
2014-12-16 14:44:43 +03:00
|
|
|
import shutil
|
|
|
|
import json
|
2015-07-08 20:52:30 +03:00
|
|
|
import sys
|
2016-03-01 12:09:08 +03:00
|
|
|
from .nonproj import PseudoProjectivity
|
2016-07-20 17:28:02 +03:00
|
|
|
import random
|
2014-12-16 14:44:43 +03:00
|
|
|
|
|
|
|
from cymem.cymem cimport Pool, Address
|
2014-12-19 01:30:50 +03:00
|
|
|
from murmurhash.mrmr cimport hash64
|
2016-07-20 17:28:02 +03:00
|
|
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t, idx_t
|
2016-01-30 16:31:12 +03:00
|
|
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
|
|
|
from thinc.linalg cimport VecVec
|
2016-07-20 17:28:02 +03:00
|
|
|
from thinc.structs cimport NeuralNetC, SparseArrayC, ExampleC
|
2016-02-01 05:08:42 +03:00
|
|
|
from preshed.maps cimport MapStruct
|
|
|
|
from preshed.maps cimport map_get
|
2016-02-01 10:34:55 +03:00
|
|
|
from thinc.structs cimport FeatureC
|
2014-12-16 14:44:43 +03:00
|
|
|
|
|
|
|
from util import Config
|
|
|
|
|
2015-07-13 21:20:58 +03:00
|
|
|
from ..structs cimport TokenC
|
|
|
|
|
|
|
|
from ..tokens.doc cimport Doc
|
2015-03-14 18:06:35 +03:00
|
|
|
from ..strings cimport StringStore
|
2014-12-16 14:44:43 +03:00
|
|
|
|
2015-02-22 08:32:07 +03:00
|
|
|
from .transition_system import OracleError
|
2015-06-14 20:01:26 +03:00
|
|
|
from .transition_system cimport TransitionSystem, Transition
|
2014-12-16 14:44:43 +03:00
|
|
|
|
2015-05-24 22:35:02 +03:00
|
|
|
from ..gold cimport GoldParse
|
2014-12-16 14:44:43 +03:00
|
|
|
|
|
|
|
from . import _parse_features
|
2015-06-09 22:20:14 +03:00
|
|
|
from ._parse_features cimport CONTEXT_SIZE
|
2015-06-10 00:23:28 +03:00
|
|
|
from ._parse_features cimport fill_context
|
2016-05-26 20:06:10 +03:00
|
|
|
from ._parse_features cimport *
|
2015-06-10 00:23:28 +03:00
|
|
|
from .stateclass cimport StateClass
|
2016-02-01 10:34:55 +03:00
|
|
|
from ._state cimport StateC
|
2014-12-16 14:44:43 +03:00
|
|
|
|
|
|
|
|
2015-04-19 11:31:31 +03:00
|
|
|
DEBUG = False
|
2014-12-16 14:44:43 +03:00
|
|
|
def set_debug(val):
|
|
|
|
global DEBUG
|
|
|
|
DEBUG = val
|
|
|
|
|
|
|
|
|
|
|
|
def get_templates(name):
|
2014-12-17 13:09:29 +03:00
|
|
|
pf = _parse_features
|
2015-03-24 07:08:35 +03:00
|
|
|
if name == 'ner':
|
2015-03-10 20:00:23 +03:00
|
|
|
return pf.ner
|
2015-03-24 06:29:01 +03:00
|
|
|
elif name == 'debug':
|
|
|
|
return pf.unigrams
|
2016-07-20 17:28:02 +03:00
|
|
|
elif name.startswith('neural'):
|
|
|
|
features = pf.words + pf.tags + pf.labels
|
|
|
|
slots = [0] * len(pf.words) + [1] * len(pf.tags) + [2] * len(pf.labels)
|
|
|
|
return ([(f,) for f in features], slots)
|
2014-12-18 01:05:31 +03:00
|
|
|
else:
|
2015-06-14 22:17:39 +03:00
|
|
|
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
|
2015-02-21 07:30:31 +03:00
|
|
|
pf.tree_shape + pf.trigrams)
|
2014-12-16 14:44:43 +03:00
|
|
|
|
|
|
|
|
2015-07-08 13:35:46 +03:00
|
|
|
def ParserFactory(transition_system):
|
|
|
|
return lambda strings, dir_: Parser(strings, dir_, transition_system)
|
|
|
|
|
|
|
|
|
2016-05-26 20:06:10 +03:00
|
|
|
cdef class ParserPerceptron(AveragedPerceptron):
|
2016-07-20 17:28:02 +03:00
|
|
|
@property
|
|
|
|
def widths(self):
|
|
|
|
return (self.extracter.nr_templ,)
|
|
|
|
|
|
|
|
def update(self, Example eg):
|
|
|
|
'''Does regression on negative cost. Sort of cute?'''
|
|
|
|
self.time += 1
|
|
|
|
cdef weight_t loss = 0.0
|
|
|
|
best = eg.best
|
|
|
|
for clas in range(eg.c.nr_class):
|
|
|
|
if not eg.c.is_valid[clas]:
|
|
|
|
continue
|
|
|
|
if eg.c.scores[clas] < eg.c.scores[best]:
|
|
|
|
continue
|
|
|
|
loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2
|
|
|
|
d_loss = 2 * (-eg.c.costs[clas] - eg.c.scores[clas])
|
|
|
|
step = d_loss * 0.001
|
|
|
|
for feat in eg.c.features[:eg.c.nr_feat]:
|
|
|
|
self.update_weight(feat.key, clas, feat.value * step)
|
|
|
|
return int(loss)
|
|
|
|
|
|
|
|
cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil:
|
|
|
|
state = <const StateC*>_state
|
2016-02-01 10:34:55 +03:00
|
|
|
fill_context(eg.atoms, state)
|
2015-11-06 19:24:30 +03:00
|
|
|
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
|
|
|
|
|
|
|
|
2016-05-26 20:06:10 +03:00
|
|
|
cdef class ParserNeuralNet(NeuralNet):
|
2016-07-20 17:28:02 +03:00
|
|
|
def __init__(self, shape, **kwargs):
|
|
|
|
vector_widths = [4] * 57
|
|
|
|
slots = [0, 1, 2, 3] # S0
|
|
|
|
slots += [4, 5, 6, 7] # S1
|
|
|
|
slots += [8, 9, 10, 11] # S2
|
|
|
|
slots += [12, 13, 14, 15] # S3+
|
|
|
|
slots += [16, 17, 18, 19] # B0
|
|
|
|
slots += [20, 21, 22, 23] # B1
|
|
|
|
slots += [24, 25, 26, 27] # B2
|
|
|
|
slots += [28, 29, 30, 31] # B3+
|
|
|
|
slots += [32, 33, 34, 35] * 2 # S0l, S0r
|
|
|
|
slots += [36, 37, 38, 39] * 2 # B0l, B0r
|
|
|
|
slots += [40, 41, 42, 43] * 2 # S1l, S1r
|
|
|
|
slots += [44, 45, 46, 47] * 2 # S2l, S2r
|
|
|
|
slots += [48, 49, 50, 51, 52]
|
|
|
|
slots += [53, 54, 55, 56]
|
|
|
|
input_length = sum(vector_widths[slot] for slot in slots)
|
|
|
|
widths = [input_length] + shape[3:]
|
|
|
|
|
|
|
|
NeuralNet.__init__(self, widths, embed=(vector_widths, slots), **kwargs)
|
2016-05-26 20:06:10 +03:00
|
|
|
|
|
|
|
@property
|
|
|
|
def nr_feat(self):
|
2016-07-20 17:28:02 +03:00
|
|
|
return 2000
|
2016-05-26 20:06:10 +03:00
|
|
|
|
2016-07-20 17:28:02 +03:00
|
|
|
cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil:
|
|
|
|
memset(eg.features, 0, 2000 * sizeof(FeatureC))
|
|
|
|
state = <const StateC*>_state
|
2016-05-26 20:06:10 +03:00
|
|
|
fill_context(eg.atoms, state)
|
2016-07-20 17:28:02 +03:00
|
|
|
feats = eg.features
|
|
|
|
|
|
|
|
feats = _add_token(feats, 0, state.S_(0), 1.0)
|
|
|
|
feats = _add_token(feats, 4, state.S_(1), 1.0)
|
|
|
|
feats = _add_token(feats, 8, state.S_(2), 1.0)
|
|
|
|
# Rest of the stack, with exponential decay
|
|
|
|
for i in range(3, state.stack_depth()):
|
|
|
|
feats = _add_token(feats, 12, state.S_(i), 1.0 * 0.5**(i-2))
|
|
|
|
feats = _add_token(feats, 16, state.B_(0), 1.0)
|
|
|
|
feats = _add_token(feats, 20, state.B_(1), 1.0)
|
|
|
|
feats = _add_token(feats, 24, state.B_(2), 1.0)
|
|
|
|
# Rest of the buffer, with exponential decay
|
|
|
|
for i in range(3, min(8, state.buffer_length())):
|
|
|
|
feats = _add_token(feats, 28, state.B_(i), 1.0 * 0.5**(i-2))
|
|
|
|
feats = _add_subtree(feats, 32, state, state.S(0))
|
|
|
|
feats = _add_subtree(feats, 40, state, state.B(0))
|
|
|
|
feats = _add_subtree(feats, 48, state, state.S(1))
|
|
|
|
feats = _add_subtree(feats, 56, state, state.S(2))
|
|
|
|
feats = _add_pos_bigram(feats, 64, state.S_(0), state.B_(0))
|
|
|
|
feats = _add_pos_bigram(feats, 65, state.S_(1), state.S_(0))
|
|
|
|
feats = _add_pos_bigram(feats, 66, state.S_(1), state.B_(0))
|
|
|
|
feats = _add_pos_bigram(feats, 67, state.S_(0), state.B_(1))
|
|
|
|
feats = _add_pos_bigram(feats, 68, state.B_(0), state.B_(1))
|
|
|
|
feats = _add_pos_trigram(feats, 69, state.S_(1), state.S_(0), state.B_(0))
|
|
|
|
feats = _add_pos_trigram(feats, 70, state.S_(0), state.B_(0), state.B_(1))
|
|
|
|
feats = _add_pos_trigram(feats, 71, state.S_(0), state.R_(state.S(0), 1),
|
|
|
|
state.R_(state.S(0), 2))
|
|
|
|
feats = _add_pos_trigram(feats, 72, state.S_(0), state.L_(state.S(0), 1),
|
|
|
|
state.L_(state.S(0), 2))
|
|
|
|
eg.nr_feat = feats - eg.features
|
|
|
|
|
|
|
|
|
|
|
|
cdef inline FeatureC* _add_token(FeatureC* feats,
|
|
|
|
int slot, const TokenC* token, weight_t value) nogil:
|
|
|
|
# Word
|
|
|
|
feats.i = slot
|
|
|
|
feats.key = token.lex.norm
|
|
|
|
feats.value = value
|
|
|
|
feats += 1
|
|
|
|
# POS tag
|
|
|
|
feats.i = slot+1
|
|
|
|
feats.key = token.tag
|
|
|
|
feats.value = value
|
|
|
|
feats += 1
|
|
|
|
# Dependency label
|
|
|
|
feats.i = slot+2
|
|
|
|
feats.key = token.dep
|
|
|
|
feats.value = value
|
|
|
|
feats += 1
|
|
|
|
# Word, label, tag
|
|
|
|
feats.i = slot+3
|
|
|
|
cdef uint64_t key[3]
|
|
|
|
key[0] = token.lex.cluster
|
|
|
|
key[1] = token.tag
|
|
|
|
key[2] = token.dep
|
|
|
|
feats.key = hash64(key, sizeof(key), 0)
|
|
|
|
feats.value = value
|
|
|
|
feats += 1
|
|
|
|
return feats
|
|
|
|
|
|
|
|
|
|
|
|
cdef inline FeatureC* _add_subtree(FeatureC* feats, int slot, const StateC* state, int t) nogil:
|
|
|
|
value = 1.0
|
|
|
|
for i in range(state.n_R(t)):
|
|
|
|
feats = _add_token(feats, slot, state.R_(t, i+1), value)
|
|
|
|
value *= 0.5
|
|
|
|
slot += 4
|
|
|
|
value = 1.0
|
|
|
|
for i in range(state.n_L(t)):
|
|
|
|
feats = _add_token(feats, slot, state.L_(t, i+1), value)
|
|
|
|
value *= 0.5
|
|
|
|
return feats
|
|
|
|
|
|
|
|
|
|
|
|
cdef inline FeatureC* _add_pos_bigram(FeatureC* feat, int slot,
|
|
|
|
const TokenC* t1, const TokenC* t2) nogil:
|
|
|
|
cdef uint64_t[2] key
|
|
|
|
key[0] = t1.tag
|
|
|
|
key[1] = t2.tag
|
|
|
|
feat.i = slot
|
|
|
|
feat.key = hash64(key, sizeof(key), slot)
|
|
|
|
feat.value = 1.0
|
|
|
|
return feat+1
|
|
|
|
|
|
|
|
|
|
|
|
cdef inline FeatureC* _add_pos_trigram(FeatureC* feat, int slot,
|
|
|
|
const TokenC* t1, const TokenC* t2, const TokenC* t3) nogil:
|
|
|
|
cdef uint64_t[3] key
|
|
|
|
key[0] = t1.tag
|
|
|
|
key[1] = t2.tag
|
|
|
|
key[2] = t3.tag
|
|
|
|
feat.i = slot
|
|
|
|
feat.key = hash64(key, sizeof(key), slot)
|
|
|
|
feat.value = 1.0
|
|
|
|
return feat+1
|
|
|
|
|
|
|
|
cdef class ParserNeuralNetEnsemble(ParserNeuralNet):
|
|
|
|
def __init__(self, shape, update_step='sgd', eta=0.01, rho=0.0, n=5):
|
|
|
|
ParserNeuralNet.__init__(self, shape, update_step=update_step, eta=eta, rho=rho)
|
|
|
|
self._models_c = <NeuralNetC**>self.mem.alloc(sizeof(NeuralNetC*), n)
|
|
|
|
self._masks = <int**>self.mem.alloc(sizeof(int*), n)
|
|
|
|
self._models = []
|
|
|
|
cdef ParserNeuralNet model
|
|
|
|
threshold = 1.5 / n
|
|
|
|
self._nr_model = n
|
|
|
|
for i in range(n):
|
|
|
|
self._masks[i] = <int*>self.mem.alloc(sizeof(int), self.nr_feat)
|
|
|
|
for j in range(self.nr_feat):
|
|
|
|
self._masks[i][j] = random.random() < threshold
|
|
|
|
# We have to pass our pool here, because the embedding table passes
|
|
|
|
# it around.
|
|
|
|
model = ParserNeuralNet(shape, update_step=update_step, eta=eta, rho=rho)
|
|
|
|
self._models_c[i] = &model.c
|
|
|
|
self._models.append(model)
|
|
|
|
|
|
|
|
property eta:
|
|
|
|
def __get__(self):
|
|
|
|
return self._models[0].eta
|
|
|
|
|
|
|
|
def __set__(self, weight_t value):
|
|
|
|
for model in self._models:
|
|
|
|
model.eta = value
|
|
|
|
|
|
|
|
def sparsify_embeddings(self, penalty):
|
|
|
|
p = 0.0
|
|
|
|
for model in self._models:
|
|
|
|
p += model.sparsify_embeddings(penalty)
|
|
|
|
return p / len(self._models)
|
|
|
|
|
|
|
|
cdef void set_scoresC(self, weight_t* scores, const void* _feats,
|
|
|
|
int nr_feat, int is_sparse) nogil:
|
|
|
|
nr_class = self.c.widths[self.c.nr_layer-1]
|
|
|
|
sub_scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
|
|
|
|
sub_feats = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
|
|
|
|
feats = <const FeatureC*>_feats
|
|
|
|
for i in range(self._nr_model):
|
|
|
|
for j in range(nr_feat):
|
|
|
|
sub_feats[j] = feats[j]
|
|
|
|
sub_feats[j].value *= self._masks[i][j]
|
|
|
|
self.c = self._models_c[i][0]
|
|
|
|
self.c.weights = self._models_c[i].weights
|
|
|
|
self.c.gradient = self._models_c[i].gradient
|
|
|
|
ParserNeuralNet.set_scoresC(self, sub_scores, sub_feats, nr_feat, 1)
|
|
|
|
for j in range(nr_class):
|
|
|
|
scores[j] += sub_scores[j]
|
|
|
|
sub_scores[j] = 0.0
|
|
|
|
for j in range(nr_class):
|
|
|
|
scores[j] /= self._nr_model
|
|
|
|
free(sub_feats)
|
|
|
|
free(sub_scores)
|
|
|
|
|
|
|
|
def update(self, Example eg):
|
|
|
|
if eg.cost == 0:
|
|
|
|
return 0.0
|
|
|
|
loss = 0.0
|
|
|
|
full_feats = <FeatureC*>calloc(sizeof(FeatureC), eg.nr_feat)
|
|
|
|
memcpy(full_feats, eg.c.features, sizeof(FeatureC) * eg.nr_feat)
|
|
|
|
cdef ParserNeuralNet model
|
|
|
|
for i, model in enumerate(self._models):
|
|
|
|
for j in range(eg.nr_feat):
|
|
|
|
eg.c.features[j].value *= self._masks[i][j]
|
|
|
|
loss += model.update(eg)
|
|
|
|
memcpy(eg.c.features, full_feats, sizeof(FeatureC) * eg.nr_feat)
|
|
|
|
free(full_feats)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
def end_training(self):
|
|
|
|
for model in self._models:
|
|
|
|
model.end_training()
|
2016-05-26 20:06:10 +03:00
|
|
|
|
|
|
|
|
2015-06-02 01:28:02 +03:00
|
|
|
cdef class Parser:
|
2016-07-20 17:28:02 +03:00
|
|
|
def __init__(self, StringStore strings, transition_system, model):
|
2015-08-26 20:19:01 +03:00
|
|
|
self.moves = transition_system
|
|
|
|
self.model = model
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_dir(cls, model_dir, strings, transition_system):
|
2015-07-08 20:52:30 +03:00
|
|
|
if not os.path.exists(model_dir):
|
|
|
|
print >> sys.stderr, "Warning: No model found at", model_dir
|
|
|
|
elif not os.path.isdir(model_dir):
|
|
|
|
print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
|
2015-08-26 20:19:01 +03:00
|
|
|
cfg = Config.read(model_dir, 'config')
|
|
|
|
moves = transition_system(strings, cfg.labels)
|
2016-05-26 20:06:10 +03:00
|
|
|
|
2016-07-20 17:28:02 +03:00
|
|
|
if cfg.get('model') == 'neural':
|
|
|
|
shape = [cfg.vector_widths, cfg.slots, cfg.feat_set]
|
|
|
|
shape.extend(cfg.hidden_layers)
|
|
|
|
shape.append(moves.n_moves)
|
|
|
|
if cfg.get('ensemble_size') >= 2:
|
|
|
|
model = ParserNeuralNetEnsemble(shape, update_step=cfg.update_step,
|
|
|
|
eta=cfg.eta, rho=cfg.rho,
|
|
|
|
n=cfg.ensemble_size)
|
|
|
|
else:
|
|
|
|
model = ParserNeuralNet(shape, update_step=cfg.update_step,
|
|
|
|
eta=cfg.eta, rho=cfg.rho)
|
|
|
|
else:
|
|
|
|
model = ParserPerceptron(get_templates(cfg.feat_set))
|
|
|
|
|
2015-11-06 19:24:30 +03:00
|
|
|
if path.exists(path.join(model_dir, 'model')):
|
|
|
|
model.load(path.join(model_dir, 'model'))
|
2016-07-20 17:28:02 +03:00
|
|
|
return cls(strings, moves, model)
|
2015-08-26 20:19:01 +03:00
|
|
|
|
2015-12-29 20:00:48 +03:00
|
|
|
@classmethod
|
|
|
|
def load(cls, pkg_or_str_or_file, vocab):
|
|
|
|
# TODO
|
|
|
|
raise NotImplementedError(
|
|
|
|
"This should be here, but isn't yet =/. Use Parser.from_dir")
|
|
|
|
|
2015-10-12 11:33:11 +03:00
|
|
|
def __reduce__(self):
|
|
|
|
return (Parser, (self.moves.strings, self.moves, self.model), None, None)
|
|
|
|
|
2015-11-06 19:24:30 +03:00
|
|
|
def __call__(self, Doc tokens):
|
2016-02-01 10:34:55 +03:00
|
|
|
cdef int nr_class = self.moves.n_moves
|
|
|
|
cdef int nr_feat = self.model.nr_feat
|
2016-01-30 22:27:07 +03:00
|
|
|
with nogil:
|
2016-02-01 10:34:55 +03:00
|
|
|
self.parseC(tokens.c, tokens.length, nr_feat, nr_class)
|
2016-01-30 22:27:07 +03:00
|
|
|
# Check for KeyboardInterrupt etc. Untested
|
|
|
|
PyErr_CheckSignals()
|
2016-05-02 15:25:10 +03:00
|
|
|
self.moves.finalize_doc(tokens)
|
2016-01-30 22:27:07 +03:00
|
|
|
|
2016-02-03 04:04:55 +03:00
|
|
|
def pipe(self, stream, int batch_size=1000, int n_threads=2):
|
|
|
|
cdef Pool mem = Pool()
|
|
|
|
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
|
|
|
|
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
|
2016-02-01 10:34:55 +03:00
|
|
|
cdef Doc doc
|
|
|
|
cdef int i
|
|
|
|
cdef int nr_class = self.moves.n_moves
|
|
|
|
cdef int nr_feat = self.model.nr_feat
|
2016-02-06 12:06:13 +03:00
|
|
|
cdef int status
|
2016-02-03 04:04:55 +03:00
|
|
|
queue = []
|
|
|
|
for doc in stream:
|
|
|
|
doc_ptr[len(queue)] = doc.c
|
|
|
|
lengths[len(queue)] = doc.length
|
2016-02-05 21:37:50 +03:00
|
|
|
queue.append(doc)
|
2016-02-03 04:04:55 +03:00
|
|
|
if len(queue) == batch_size:
|
2016-02-06 12:06:13 +03:00
|
|
|
with nogil:
|
|
|
|
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
|
|
|
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
|
|
|
|
if status != 0:
|
|
|
|
with gil:
|
|
|
|
sent_str = queue[i].text
|
|
|
|
raise ValueError("Error parsing doc: %s" % sent_str)
|
2016-02-03 04:04:55 +03:00
|
|
|
PyErr_CheckSignals()
|
|
|
|
for doc in queue:
|
2016-05-02 15:25:10 +03:00
|
|
|
self.moves.finalize_doc(doc)
|
2016-02-03 04:04:55 +03:00
|
|
|
yield doc
|
|
|
|
queue = []
|
|
|
|
batch_size = len(queue)
|
2016-02-06 12:06:13 +03:00
|
|
|
with nogil:
|
|
|
|
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
|
|
|
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
|
|
|
|
if status != 0:
|
|
|
|
with gil:
|
|
|
|
sent_str = queue[i].text
|
|
|
|
raise ValueError("Error parsing doc: %s" % sent_str)
|
2016-03-16 17:53:35 +03:00
|
|
|
PyErr_CheckSignals()
|
2016-02-06 12:06:13 +03:00
|
|
|
for doc in queue:
|
2016-05-02 15:25:10 +03:00
|
|
|
self.moves.finalize_doc(doc)
|
2016-02-06 12:06:13 +03:00
|
|
|
yield doc
|
2016-03-16 17:53:35 +03:00
|
|
|
|
2016-05-26 20:06:10 +03:00
|
|
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
|
|
|
|
cdef Example py_eg = Example(nr_class=nr_class, nr_atom=CONTEXT_SIZE, nr_feat=nr_feat,
|
|
|
|
widths=self.model.widths)
|
|
|
|
cdef ExampleC* eg = py_eg.c
|
2016-02-01 10:34:55 +03:00
|
|
|
state = new StateC(tokens, length)
|
|
|
|
self.moves.initialize_state(state)
|
|
|
|
cdef int i
|
|
|
|
while not state.is_final():
|
2016-05-26 20:06:10 +03:00
|
|
|
self.model.set_featuresC(eg, state)
|
2016-02-01 10:34:55 +03:00
|
|
|
self.moves.set_valid(eg.is_valid, state)
|
2016-05-26 20:06:10 +03:00
|
|
|
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat, 1)
|
2016-02-01 10:34:55 +03:00
|
|
|
|
|
|
|
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
|
2016-01-30 16:31:12 +03:00
|
|
|
|
|
|
|
action = self.moves.c[guess]
|
2016-02-01 10:34:55 +03:00
|
|
|
if not eg.is_valid[guess]:
|
2016-04-13 16:28:28 +03:00
|
|
|
return 1
|
|
|
|
|
2016-02-01 10:34:55 +03:00
|
|
|
action.do(state, action.label)
|
2016-05-26 20:06:10 +03:00
|
|
|
py_eg.reset()
|
2016-02-01 10:34:55 +03:00
|
|
|
self.moves.finalize_state(state)
|
|
|
|
for i in range(length):
|
|
|
|
tokens[i] = state._sent[i]
|
|
|
|
del state
|
2016-02-06 12:06:13 +03:00
|
|
|
return 0
|
2015-11-06 19:24:30 +03:00
|
|
|
|
2015-07-14 15:11:23 +03:00
|
|
|
def train(self, Doc tokens, GoldParse gold):
|
2015-06-02 02:34:19 +03:00
|
|
|
self.moves.preprocess_gold(gold)
|
2015-11-03 16:15:14 +03:00
|
|
|
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
|
2016-02-01 10:34:55 +03:00
|
|
|
self.moves.initialize_state(stcls.c)
|
2015-11-06 19:24:30 +03:00
|
|
|
cdef Pool mem = Pool()
|
2016-01-30 16:31:12 +03:00
|
|
|
cdef Example eg = Example(
|
|
|
|
nr_class=self.moves.n_moves,
|
2016-05-26 20:06:10 +03:00
|
|
|
widths=self.model.widths,
|
2016-01-30 16:31:12 +03:00
|
|
|
nr_atom=CONTEXT_SIZE,
|
|
|
|
nr_feat=self.model.nr_feat)
|
2016-07-20 17:28:02 +03:00
|
|
|
loss = 0
|
2015-11-06 19:24:30 +03:00
|
|
|
cdef Transition action
|
2015-06-10 02:35:28 +03:00
|
|
|
while not stcls.is_final():
|
2016-05-26 20:06:10 +03:00
|
|
|
self.model.set_featuresC(eg.c, stcls.c)
|
2016-07-20 17:28:02 +03:00
|
|
|
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat, 1)
|
2016-01-30 16:31:12 +03:00
|
|
|
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
2016-07-20 17:28:02 +03:00
|
|
|
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
|
|
|
assert guess >= 0
|
|
|
|
action = self.moves.c[guess]
|
2016-02-01 04:58:14 +03:00
|
|
|
action.do(stcls.c, action.label)
|
2016-07-20 17:28:02 +03:00
|
|
|
|
|
|
|
loss += self.model.update(eg)
|
2016-05-26 20:06:10 +03:00
|
|
|
eg.reset()
|
2015-06-30 15:26:32 +03:00
|
|
|
return loss
|
2015-08-10 01:08:46 +03:00
|
|
|
|
|
|
|
def step_through(self, Doc doc):
|
|
|
|
return StepwiseState(self, doc)
|
|
|
|
|
2016-05-03 15:24:35 +03:00
|
|
|
def from_transition_sequence(self, Doc doc, sequence):
|
|
|
|
with self.step_through(doc) as stepwise:
|
|
|
|
for transition in sequence:
|
|
|
|
stepwise.transition(transition)
|
|
|
|
|
2016-01-19 21:11:02 +03:00
|
|
|
def add_label(self, label):
|
|
|
|
for action in self.moves.action_types:
|
|
|
|
self.moves.add_action(action, label)
|
|
|
|
|
2015-08-10 01:08:46 +03:00
|
|
|
|
|
|
|
cdef class StepwiseState:
|
|
|
|
cdef readonly StateClass stcls
|
|
|
|
cdef readonly Example eg
|
|
|
|
cdef readonly Doc doc
|
|
|
|
cdef readonly Parser parser
|
|
|
|
|
|
|
|
def __init__(self, Parser parser, Doc doc):
|
|
|
|
self.parser = parser
|
|
|
|
self.doc = doc
|
2015-11-03 16:15:14 +03:00
|
|
|
self.stcls = StateClass.init(doc.c, doc.length)
|
2016-02-01 10:34:55 +03:00
|
|
|
self.parser.moves.initialize_state(self.stcls.c)
|
2016-01-30 16:31:12 +03:00
|
|
|
self.eg = Example(
|
|
|
|
nr_class=self.parser.moves.n_moves,
|
|
|
|
nr_atom=CONTEXT_SIZE,
|
|
|
|
nr_feat=self.parser.model.nr_feat)
|
2015-08-10 01:08:46 +03:00
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
|
|
self.finish()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def is_final(self):
|
|
|
|
return self.stcls.is_final()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def stack(self):
|
|
|
|
return self.stcls.stack
|
|
|
|
|
|
|
|
@property
|
|
|
|
def queue(self):
|
|
|
|
return self.stcls.queue
|
|
|
|
|
|
|
|
@property
|
|
|
|
def heads(self):
|
2016-04-13 16:28:28 +03:00
|
|
|
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
|
2015-08-10 01:08:46 +03:00
|
|
|
|
|
|
|
@property
|
|
|
|
def deps(self):
|
2016-02-01 04:22:21 +03:00
|
|
|
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
|
2016-04-13 16:28:28 +03:00
|
|
|
for i in range(self.stcls.c.length)]
|
2015-08-10 01:08:46 +03:00
|
|
|
|
|
|
|
def predict(self):
|
2016-01-30 16:31:12 +03:00
|
|
|
self.eg.reset()
|
2016-05-26 20:06:10 +03:00
|
|
|
self.parser.model.set_featuresC(self.eg.c, self.stcls.c)
|
2016-02-01 05:00:15 +03:00
|
|
|
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
2016-01-30 16:31:12 +03:00
|
|
|
self.parser.model.set_scoresC(self.eg.c.scores,
|
2016-05-26 20:06:10 +03:00
|
|
|
self.eg.c.features, self.eg.c.nr_feat, 1)
|
2015-11-06 19:24:30 +03:00
|
|
|
|
2016-01-30 16:31:12 +03:00
|
|
|
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
2015-08-10 01:08:46 +03:00
|
|
|
return self.parser.moves.move_name(action.move, action.label)
|
|
|
|
|
|
|
|
def transition(self, action_name):
|
2015-08-10 06:05:31 +03:00
|
|
|
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
|
2015-08-10 01:08:46 +03:00
|
|
|
if action_name == '_':
|
|
|
|
action_name = self.predict()
|
2015-08-10 06:58:43 +03:00
|
|
|
action = self.parser.moves.lookup_transition(action_name)
|
|
|
|
elif action_name == 'L' or action_name == 'R':
|
2015-08-10 06:05:31 +03:00
|
|
|
self.predict()
|
|
|
|
move = moves[action_name]
|
|
|
|
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
|
|
|
|
self.eg.c.nr_class)
|
|
|
|
action = self.parser.moves.c[clas]
|
|
|
|
else:
|
|
|
|
action = self.parser.moves.lookup_transition(action_name)
|
2016-02-01 04:58:14 +03:00
|
|
|
action.do(self.stcls.c, action.label)
|
2015-08-10 01:08:46 +03:00
|
|
|
|
|
|
|
def finish(self):
|
|
|
|
if self.stcls.is_final():
|
2016-02-01 10:34:55 +03:00
|
|
|
self.parser.moves.finalize_state(self.stcls.c)
|
2016-02-01 04:22:21 +03:00
|
|
|
self.doc.set_parse(self.stcls.c._sent)
|
2016-05-02 15:25:10 +03:00
|
|
|
self.parser.moves.finalize_doc(self.doc)
|
2015-08-10 06:05:31 +03:00
|
|
|
|
|
|
|
|
|
|
|
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
|
|
|
|
int nr_class) except -1:
|
|
|
|
cdef weight_t score = 0
|
|
|
|
cdef int mode = -1
|
|
|
|
cdef int i
|
|
|
|
for i in range(nr_class):
|
|
|
|
if actions[i].move == move and (mode == -1 or scores[i] >= score):
|
2015-08-10 06:58:43 +03:00
|
|
|
mode = i
|
2015-08-10 06:05:31 +03:00
|
|
|
score = scores[i]
|
|
|
|
return mode
|