2019-07-10 13:49:18 +03:00
|
|
|
|
import pytest
|
2020-07-22 14:42:59 +03:00
|
|
|
|
from spacy import registry
|
2019-07-10 13:49:18 +03:00
|
|
|
|
from spacy.lang.en import English
|
|
|
|
|
from spacy.lang.de import German
|
2020-07-22 14:42:59 +03:00
|
|
|
|
from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
2019-07-10 13:49:18 +03:00
|
|
|
|
from spacy.pipeline import EntityRuler, EntityRecognizer
|
|
|
|
|
from spacy.matcher import Matcher, PhraseMatcher
|
|
|
|
|
from spacy.tokens import Doc
|
|
|
|
|
from spacy.vocab import Vocab
|
|
|
|
|
from spacy.attrs import ENT_IOB, ENT_TYPE
|
2019-12-22 03:53:56 +03:00
|
|
|
|
from spacy.compat import pickle
|
2019-07-10 13:49:18 +03:00
|
|
|
|
from spacy import displacy
|
2019-10-21 13:04:46 +03:00
|
|
|
|
from spacy.vectors import Vectors
|
2020-09-21 21:43:54 +03:00
|
|
|
|
import numpy
|
2019-07-10 13:49:18 +03:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3002():
|
|
|
|
|
"""Test that the tokenizer doesn't hang on a long list of dots"""
|
|
|
|
|
nlp = German()
|
|
|
|
|
doc = nlp(
|
|
|
|
|
"880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.671 ist eine lange Zahl"
|
|
|
|
|
)
|
|
|
|
|
assert len(doc) == 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3009(en_vocab):
|
|
|
|
|
"""Test problem with matcher quantifiers"""
|
|
|
|
|
patterns = [
|
2020-07-15 15:13:58 +03:00
|
|
|
|
[{"ORTH": "has"}, {"LOWER": "to"}, {"LOWER": "do"}, {"TAG": "IN"}],
|
2019-07-10 13:49:18 +03:00
|
|
|
|
[
|
2020-07-15 15:13:58 +03:00
|
|
|
|
{"ORTH": "has"},
|
2019-07-10 13:49:18 +03:00
|
|
|
|
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "*"},
|
|
|
|
|
{"LOWER": "to"},
|
|
|
|
|
{"LOWER": "do"},
|
2019-08-25 22:54:26 +03:00
|
|
|
|
{"TAG": "IN"},
|
2019-07-10 13:49:18 +03:00
|
|
|
|
],
|
|
|
|
|
[
|
2020-07-15 15:13:58 +03:00
|
|
|
|
{"ORTH": "has"},
|
2019-07-10 13:49:18 +03:00
|
|
|
|
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "?"},
|
|
|
|
|
{"LOWER": "to"},
|
|
|
|
|
{"LOWER": "do"},
|
2019-08-25 22:54:26 +03:00
|
|
|
|
{"TAG": "IN"},
|
2019-07-10 13:49:18 +03:00
|
|
|
|
],
|
|
|
|
|
]
|
|
|
|
|
words = ["also", "has", "to", "do", "with"]
|
|
|
|
|
tags = ["RB", "VBZ", "TO", "VB", "IN"]
|
2020-07-15 15:13:58 +03:00
|
|
|
|
pos = ["ADV", "VERB", "ADP", "VERB", "ADP"]
|
2020-09-21 21:43:54 +03:00
|
|
|
|
doc = Doc(en_vocab, words=words, tags=tags, pos=pos)
|
2019-07-10 13:49:18 +03:00
|
|
|
|
matcher = Matcher(en_vocab)
|
|
|
|
|
for i, pattern in enumerate(patterns):
|
2019-10-25 23:21:08 +03:00
|
|
|
|
matcher.add(str(i), [pattern])
|
2019-07-10 13:49:18 +03:00
|
|
|
|
matches = matcher(doc)
|
|
|
|
|
assert matches
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3012(en_vocab):
|
|
|
|
|
"""Test that the is_tagged attribute doesn't get overwritten when we from_array
|
|
|
|
|
without tag information."""
|
|
|
|
|
words = ["This", "is", "10", "%", "."]
|
|
|
|
|
tags = ["DT", "VBZ", "CD", "NN", "."]
|
|
|
|
|
pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"]
|
2020-10-01 17:22:18 +03:00
|
|
|
|
ents = ["O", "O", "B-PERCENT", "I-PERCENT", "O"]
|
2020-09-21 21:43:54 +03:00
|
|
|
|
doc = Doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
|
2020-09-17 01:14:01 +03:00
|
|
|
|
assert doc.has_annotation("TAG")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
expected = ("10", "NUM", "CD", "PERCENT")
|
|
|
|
|
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
|
|
|
|
|
header = [ENT_IOB, ENT_TYPE]
|
|
|
|
|
ent_array = doc.to_array(header)
|
|
|
|
|
doc.from_array(header, ent_array)
|
|
|
|
|
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
|
|
|
|
|
# Serializing then deserializing
|
|
|
|
|
doc_bytes = doc.to_bytes()
|
|
|
|
|
doc2 = Doc(en_vocab).from_bytes(doc_bytes)
|
|
|
|
|
assert (doc2[2].text, doc2[2].pos_, doc2[2].tag_, doc2[2].ent_type_) == expected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3199():
|
|
|
|
|
"""Test that Span.noun_chunks works correctly if no noun chunks iterator
|
|
|
|
|
is available. To make this test future-proof, we're constructing a Doc
|
2020-09-17 01:14:01 +03:00
|
|
|
|
with a new Vocab here and a parse tree to make sure the noun chunks run.
|
2019-07-10 13:49:18 +03:00
|
|
|
|
"""
|
2020-09-21 21:43:54 +03:00
|
|
|
|
words = ["This", "is", "a", "sentence"]
|
|
|
|
|
doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
|
2021-01-17 14:56:05 +03:00
|
|
|
|
with pytest.raises(NotImplementedError):
|
|
|
|
|
list(doc[0:3].noun_chunks)
|
2019-07-10 13:49:18 +03:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3209():
|
|
|
|
|
"""Test issue that occurred in spaCy nightly where NER labels were being
|
|
|
|
|
mapped to classes incorrectly after loading the model, when the labels
|
|
|
|
|
were added using ner.add_label().
|
|
|
|
|
"""
|
|
|
|
|
nlp = English()
|
2020-07-22 14:42:59 +03:00
|
|
|
|
ner = nlp.add_pipe("ner")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
ner.add_label("ANIMAL")
|
2020-09-28 22:35:09 +03:00
|
|
|
|
nlp.initialize()
|
2019-07-10 13:49:18 +03:00
|
|
|
|
move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"]
|
|
|
|
|
assert ner.move_names == move_names
|
|
|
|
|
nlp2 = English()
|
2020-07-22 14:42:59 +03:00
|
|
|
|
ner2 = nlp2.add_pipe("ner")
|
|
|
|
|
model = ner2.model
|
2020-05-18 23:23:33 +03:00
|
|
|
|
model.attrs["resize_output"](model, ner.moves.n_moves)
|
2019-07-10 13:49:18 +03:00
|
|
|
|
nlp2.from_bytes(nlp.to_bytes())
|
2020-07-22 14:42:59 +03:00
|
|
|
|
assert ner2.move_names == move_names
|
2019-07-10 13:49:18 +03:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3248_1():
|
|
|
|
|
"""Test that the PhraseMatcher correctly reports its number of rules, not
|
|
|
|
|
total number of patterns."""
|
|
|
|
|
nlp = English()
|
|
|
|
|
matcher = PhraseMatcher(nlp.vocab)
|
2019-10-25 23:21:08 +03:00
|
|
|
|
matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")])
|
|
|
|
|
matcher.add("TEST2", [nlp("d")])
|
2019-07-10 13:49:18 +03:00
|
|
|
|
assert len(matcher) == 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3248_2():
|
|
|
|
|
"""Test that the PhraseMatcher can be pickled correctly."""
|
|
|
|
|
nlp = English()
|
|
|
|
|
matcher = PhraseMatcher(nlp.vocab)
|
2019-10-25 23:21:08 +03:00
|
|
|
|
matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")])
|
|
|
|
|
matcher.add("TEST2", [nlp("d")])
|
2019-07-10 13:49:18 +03:00
|
|
|
|
data = pickle.dumps(matcher)
|
|
|
|
|
new_matcher = pickle.loads(data)
|
|
|
|
|
assert len(new_matcher) == len(matcher)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3277(es_tokenizer):
|
|
|
|
|
"""Test that hyphens are split correctly as prefixes."""
|
|
|
|
|
doc = es_tokenizer("—Yo me llamo... –murmuró el niño– Emilio Sánchez Pérez.")
|
|
|
|
|
assert len(doc) == 14
|
|
|
|
|
assert doc[0].text == "\u2014"
|
|
|
|
|
assert doc[5].text == "\u2013"
|
|
|
|
|
assert doc[9].text == "\u2013"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3288(en_vocab):
|
|
|
|
|
"""Test that retokenization works correctly via displaCy when punctuation
|
|
|
|
|
is merged onto the preceeding token and tensor is resized."""
|
|
|
|
|
words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"]
|
2020-09-21 21:43:54 +03:00
|
|
|
|
heads = [1, 1, 1, 4, 4, 6, 4, 4]
|
2019-07-10 13:49:18 +03:00
|
|
|
|
deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"]
|
2020-09-21 21:43:54 +03:00
|
|
|
|
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
2019-07-10 13:49:18 +03:00
|
|
|
|
doc.tensor = numpy.zeros((len(words), 96), dtype="float32")
|
|
|
|
|
displacy.render(doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3289():
|
|
|
|
|
"""Test that Language.to_bytes handles serializing a pipeline component
|
|
|
|
|
with an uninitialized model."""
|
|
|
|
|
nlp = English()
|
2020-07-22 14:42:59 +03:00
|
|
|
|
nlp.add_pipe("textcat")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
bytes_data = nlp.to_bytes()
|
|
|
|
|
new_nlp = English()
|
2020-07-22 14:42:59 +03:00
|
|
|
|
new_nlp.add_pipe("textcat")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
new_nlp.from_bytes(bytes_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3328(en_vocab):
|
|
|
|
|
doc = Doc(en_vocab, words=["Hello", ",", "how", "are", "you", "doing", "?"])
|
|
|
|
|
matcher = Matcher(en_vocab)
|
|
|
|
|
patterns = [
|
|
|
|
|
[{"LOWER": {"IN": ["hello", "how"]}}],
|
|
|
|
|
[{"LOWER": {"IN": ["you", "doing"]}}],
|
|
|
|
|
]
|
2019-10-25 23:21:08 +03:00
|
|
|
|
matcher.add("TEST", patterns)
|
2019-07-10 13:49:18 +03:00
|
|
|
|
matches = matcher(doc)
|
|
|
|
|
assert len(matches) == 4
|
|
|
|
|
matched_texts = [doc[start:end].text for _, start, end in matches]
|
|
|
|
|
assert matched_texts == ["Hello", "how", "you", "doing"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3331(en_vocab):
|
|
|
|
|
"""Test that duplicate patterns for different rules result in multiple
|
|
|
|
|
matches, one per rule.
|
|
|
|
|
"""
|
|
|
|
|
matcher = PhraseMatcher(en_vocab)
|
2019-10-25 23:21:08 +03:00
|
|
|
|
matcher.add("A", [Doc(en_vocab, words=["Barack", "Obama"])])
|
|
|
|
|
matcher.add("B", [Doc(en_vocab, words=["Barack", "Obama"])])
|
2019-07-10 13:49:18 +03:00
|
|
|
|
doc = Doc(en_vocab, words=["Barack", "Obama", "lifts", "America"])
|
|
|
|
|
matches = matcher(doc)
|
|
|
|
|
assert len(matches) == 2
|
|
|
|
|
match_ids = [en_vocab.strings[matches[0][0]], en_vocab.strings[matches[1][0]]]
|
|
|
|
|
assert sorted(match_ids) == ["A", "B"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_issue3345():
|
|
|
|
|
"""Test case where preset entity crosses sentence boundary."""
|
|
|
|
|
nlp = English()
|
|
|
|
|
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
|
|
|
|
|
doc[4].is_sent_start = True
|
|
|
|
|
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}])
|
2020-07-25 16:01:15 +03:00
|
|
|
|
cfg = {"model": DEFAULT_NER_MODEL}
|
2020-09-27 23:21:31 +03:00
|
|
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
2021-06-17 10:33:00 +03:00
|
|
|
|
ner = EntityRecognizer(doc.vocab, model)
|
2019-07-10 13:49:18 +03:00
|
|
|
|
# Add the OUT action. I wouldn't have thought this would be necessary...
|
|
|
|
|
ner.moves.add_action(5, "")
|
|
|
|
|
ner.add_label("GPE")
|
|
|
|
|
doc = ruler(doc)
|
|
|
|
|
# Get into the state just before "New"
|
|
|
|
|
state = ner.moves.init_batch([doc])[0]
|
|
|
|
|
ner.moves.apply_transition(state, "O")
|
|
|
|
|
ner.moves.apply_transition(state, "O")
|
|
|
|
|
ner.moves.apply_transition(state, "O")
|
|
|
|
|
# Check that B-GPE is valid.
|
|
|
|
|
assert ner.moves.is_valid(state, "B-GPE")
|
|
|
|
|
|
|
|
|
|
|
2019-10-21 13:04:46 +03:00
|
|
|
|
def test_issue3412():
|
|
|
|
|
data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f")
|
2020-05-19 17:41:26 +03:00
|
|
|
|
vectors = Vectors(data=data, keys=["A", "B", "C"])
|
2019-10-24 17:21:08 +03:00
|
|
|
|
keys, best_rows, scores = vectors.most_similar(
|
|
|
|
|
numpy.asarray([[9, 8, 7], [0, 0, 0]], dtype="f")
|
|
|
|
|
)
|
|
|
|
|
assert best_rows[0] == 2
|
2019-10-21 13:04:46 +03:00
|
|
|
|
|
|
|
|
|
|
2020-07-20 15:49:54 +03:00
|
|
|
|
@pytest.mark.skip(reason="default suffix rules avoid one upper-case letter before dot")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
def test_issue3449():
|
|
|
|
|
nlp = English()
|
2020-07-22 14:42:59 +03:00
|
|
|
|
nlp.add_pipe("sentencizer")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
text1 = "He gave the ball to I. Do you want to go to the movies with I?"
|
|
|
|
|
text2 = "He gave the ball to I. Do you want to go to the movies with I?"
|
|
|
|
|
text3 = "He gave the ball to I.\nDo you want to go to the movies with I?"
|
|
|
|
|
t1 = nlp(text1)
|
|
|
|
|
t2 = nlp(text2)
|
|
|
|
|
t3 = nlp(text3)
|
|
|
|
|
assert t1[5].text == "I"
|
|
|
|
|
assert t2[5].text == "I"
|
|
|
|
|
assert t3[5].text == "I"
|
|
|
|
|
|
|
|
|
|
|
2019-10-02 13:50:48 +03:00
|
|
|
|
def test_issue3456():
|
|
|
|
|
# this crashed because of a padding error in layer.ops.unflatten in thinc
|
|
|
|
|
nlp = English()
|
2020-08-07 16:27:13 +03:00
|
|
|
|
tagger = nlp.add_pipe("tagger")
|
|
|
|
|
tagger.add_label("A")
|
2020-09-28 22:35:09 +03:00
|
|
|
|
nlp.initialize()
|
2019-10-18 12:27:38 +03:00
|
|
|
|
list(nlp.pipe(["hi", ""]))
|
2019-10-02 13:50:48 +03:00
|
|
|
|
|
|
|
|
|
|
2019-07-10 13:49:18 +03:00
|
|
|
|
def test_issue3468():
|
2020-09-17 01:14:01 +03:00
|
|
|
|
"""Test that sentence boundaries are set correctly so Doc.has_annotation("SENT_START") can
|
2019-07-10 13:49:18 +03:00
|
|
|
|
be restored after serialization."""
|
|
|
|
|
nlp = English()
|
2020-07-22 14:42:59 +03:00
|
|
|
|
nlp.add_pipe("sentencizer")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
doc = nlp("Hello world")
|
|
|
|
|
assert doc[0].is_sent_start
|
2020-09-17 01:14:01 +03:00
|
|
|
|
assert doc.has_annotation("SENT_START")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
assert len(list(doc.sents)) == 1
|
|
|
|
|
doc_bytes = doc.to_bytes()
|
|
|
|
|
new_doc = Doc(nlp.vocab).from_bytes(doc_bytes)
|
|
|
|
|
assert new_doc[0].is_sent_start
|
2020-09-17 01:14:01 +03:00
|
|
|
|
assert new_doc.has_annotation("SENT_START")
|
2019-07-10 13:49:18 +03:00
|
|
|
|
assert len(list(new_doc.sents)) == 1
|