spaCy/spacy/gold.pyx

996 lines
40 KiB
Cython
Raw Normal View History

2017-03-15 17:29:42 +03:00
# cython: profile=True
# coding: utf8
from __future__ import unicode_literals, print_function
import re
import random
import numpy
import tempfile
import shutil
import itertools
from pathlib import Path
import srsly
from .syntax import nonproj
from .tokens import Doc, Span
from .errors import Errors, AlignmentError, user_warning, Warnings
from .compat import path2str
2017-10-27 22:07:59 +03:00
from . import util
from .util import minibatch, itershuffle
from libc.stdio cimport FILE, fopen, fclose, fread, fwrite, feof, fseek
2015-02-21 19:06:58 +03:00
USE_NEW_ALIGN = False
punct_re = re.compile(r"\W")
def tags_to_entities(tags):
entities = []
start = None
for i, tag in enumerate(tags):
2016-11-25 17:57:59 +03:00
if tag is None:
continue
if tag.startswith("O"):
# TODO: We shouldn't be getting these malformed inputs. Fix this.
if start is not None:
start = None
continue
elif tag == "-":
continue
elif tag.startswith("I"):
if start is None:
raise ValueError(Errors.E067.format(tags=tags[:i + 1]))
continue
if tag.startswith("U"):
entities.append((tag[2:], i, i))
elif tag.startswith("B"):
start = i
elif tag.startswith("L"):
entities.append((tag[2:], start, i))
start = None
else:
raise ValueError(Errors.E068.format(tag=tag))
return entities
def merge_sents(sents):
m_deps = [[], [], [], [], [], []]
m_cats = {}
m_brackets = []
i = 0
for (ids, words, tags, heads, labels, ner), (cats, brackets) in sents:
m_deps[0].extend(id_ + i for id_ in ids)
m_deps[1].extend(words)
m_deps[2].extend(tags)
m_deps[3].extend(head + i for head in heads)
m_deps[4].extend(labels)
m_deps[5].extend(ner)
m_brackets.extend((b["first"] + i, b["last"] + i, b["label"])
2017-10-27 18:02:55 +03:00
for b in brackets)
m_cats.update(cats)
i += len(ids)
return [(m_deps, (m_cats, m_brackets))]
_ALIGNMENT_NORM_MAP = [("``", "'"), ("''", "'"), ('"', "'"), ("`", "'")]
def _normalize_for_alignment(tokens):
tokens = [w.replace(" ", "").lower() for w in tokens]
output = []
for token in tokens:
token = token.replace(" ", "").lower()
for before, after in _ALIGNMENT_NORM_MAP:
token = token.replace(before, after)
output.append(token)
return output
def _align_before_v2_2_2(tokens_a, tokens_b):
"""Calculate alignment tables between two tokenizations, using the Levenshtein
algorithm. The alignment is case-insensitive.
tokens_a (List[str]): The candidate tokenization.
tokens_b (List[str]): The reference tokenization.
RETURNS: (tuple): A 5-tuple consisting of the following information:
* cost (int): The number of misaligned tokens.
* a2b (List[int]): Mapping of indices in `tokens_a` to indices in `tokens_b`.
For instance, if `a2b[4] == 6`, that means that `tokens_a[4]` aligns
to `tokens_b[6]`. If there's no one-to-one alignment for a token,
it has the value -1.
* b2a (List[int]): The same as `a2b`, but mapping the other direction.
* a2b_multi (Dict[int, int]): A dictionary mapping indices in `tokens_a`
to indices in `tokens_b`, where multiple tokens of `tokens_a` align to
the same token of `tokens_b`.
* b2a_multi (Dict[int, int]): As with `a2b_multi`, but mapping the other
direction.
"""
from . import _align
if tokens_a == tokens_b:
alignment = numpy.arange(len(tokens_a))
return 0, alignment, alignment, {}, {}
tokens_a = [w.replace(" ", "").lower() for w in tokens_a]
tokens_b = [w.replace(" ", "").lower() for w in tokens_b]
cost, i2j, j2i, matrix = _align.align(tokens_a, tokens_b)
i2j_multi, j2i_multi = _align.multi_align(i2j, j2i, [len(w) for w in tokens_a],
[len(w) for w in tokens_b])
for i, j in list(i2j_multi.items()):
if i2j_multi.get(i+1) != j and i2j_multi.get(i-1) != j:
i2j[i] = j
i2j_multi.pop(i)
for j, i in list(j2i_multi.items()):
if j2i_multi.get(j+1) != i and j2i_multi.get(j-1) != i:
j2i[j] = i
j2i_multi.pop(j)
return cost, i2j, j2i, i2j_multi, j2i_multi
2019-07-17 15:29:52 +03:00
def align(tokens_a, tokens_b):
"""Calculate alignment tables between two tokenizations.
2019-07-17 14:59:17 +03:00
2019-07-17 15:29:52 +03:00
tokens_a (List[str]): The candidate tokenization.
tokens_b (List[str]): The reference tokenization.
2019-07-17 14:59:17 +03:00
RETURNS: (tuple): A 5-tuple consisting of the following information:
* cost (int): The number of misaligned tokens.
2019-07-17 15:29:52 +03:00
* a2b (List[int]): Mapping of indices in `tokens_a` to indices in `tokens_b`.
For instance, if `a2b[4] == 6`, that means that `tokens_a[4]` aligns
to `tokens_b[6]`. If there's no one-to-one alignment for a token,
it has the value -1.
2019-07-17 14:59:17 +03:00
* b2a (List[int]): The same as `a2b`, but mapping the other direction.
2019-07-17 15:29:52 +03:00
* a2b_multi (Dict[int, int]): A dictionary mapping indices in `tokens_a`
to indices in `tokens_b`, where multiple tokens of `tokens_a` align to
the same token of `tokens_b`.
2019-07-17 14:59:17 +03:00
* b2a_multi (Dict[int, int]): As with `a2b_multi`, but mapping the other
direction.
"""
if not USE_NEW_ALIGN:
return _align_before_v2_2_2(tokens_a, tokens_b)
tokens_a = _normalize_for_alignment(tokens_a)
tokens_b = _normalize_for_alignment(tokens_b)
cost = 0
a2b = numpy.empty(len(tokens_a), dtype="i")
b2a = numpy.empty(len(tokens_b), dtype="i")
a2b_multi = {}
b2a_multi = {}
i = 0
j = 0
offset_a = 0
offset_b = 0
while i < len(tokens_a) and j < len(tokens_b):
a = tokens_a[i][offset_a:]
b = tokens_b[j][offset_b:]
a2b[i] = b2a[j] = -1
if a == b:
if offset_a == offset_b == 0:
a2b[i] = j
b2a[j] = i
elif offset_a == 0:
cost += 2
a2b_multi[i] = j
elif offset_b == 0:
cost += 2
b2a_multi[j] = i
offset_a = offset_b = 0
i += 1
j += 1
elif a == "":
assert offset_a == 0
cost += 1
i += 1
elif b == "":
assert offset_b == 0
cost += 1
j += 1
elif b.startswith(a):
cost += 1
if offset_a == 0:
a2b_multi[i] = j
i += 1
offset_a = 0
offset_b += len(a)
elif a.startswith(b):
cost += 1
if offset_b == 0:
b2a_multi[j] = i
j += 1
offset_b = 0
offset_a += len(b)
else:
assert "".join(tokens_a) != "".join(tokens_b)
2019-10-28 14:36:23 +03:00
raise AlignmentError(Errors.E186.format(tok_a=tokens_a, tok_b=tokens_b))
return cost, a2b, b2a, a2b_multi, b2a_multi
2015-05-27 20:13:11 +03:00
class GoldCorpus(object):
"""An annotated corpus, using the JSON file format. Manages
annotations for tagging, dependency parsing and NER.
DOCS: https://spacy.io/api/goldcorpus
"""
def __init__(self, train, dev, gold_preproc=False, limit=None):
"""Create a GoldCorpus.
train_path (unicode or Path): File or directory of training data.
dev_path (unicode or Path): File or directory of development data.
2017-10-27 18:02:55 +03:00
RETURNS (GoldCorpus): The newly created object.
"""
2017-05-22 18:40:46 +03:00
self.limit = limit
if isinstance(train, str) or isinstance(train, Path):
train = self.read_tuples(self.walk_corpus(train))
dev = self.read_tuples(self.walk_corpus(dev))
# Write temp directory with one doc per file, so we can shuffle and stream
self.tmp_dir = Path(tempfile.mkdtemp())
self.write_msgpack(self.tmp_dir / "train", train, limit=self.limit)
self.write_msgpack(self.tmp_dir / "dev", dev, limit=self.limit)
def __del__(self):
shutil.rmtree(path2str(self.tmp_dir))
@staticmethod
def write_msgpack(directory, doc_tuples, limit=0):
if not directory.exists():
directory.mkdir()
n = 0
for i, doc_tuple in enumerate(doc_tuples):
srsly.write_msgpack(directory / "{}.msg".format(i), [doc_tuple])
n += len(doc_tuple[1])
if limit and n >= limit:
break
@staticmethod
def walk_corpus(path):
path = util.ensure_path(path)
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
elif path.parts[-1].endswith((".json", ".jsonl")):
locs.append(path)
return locs
@staticmethod
def read_tuples(locs, limit=0):
2017-05-22 18:40:46 +03:00
i = 0
for loc in locs:
loc = util.ensure_path(loc)
if loc.parts[-1].endswith("json"):
gold_tuples = read_json_file(loc)
elif loc.parts[-1].endswith("jsonl"):
gold_tuples = srsly.read_jsonl(loc)
first_gold_tuple = next(gold_tuples)
gold_tuples = itertools.chain([first_gold_tuple], gold_tuples)
# TODO: proper format checks with schemas
if isinstance(first_gold_tuple, dict):
gold_tuples = read_json_object(gold_tuples)
elif loc.parts[-1].endswith("msg"):
gold_tuples = srsly.read_msgpack(loc)
else:
supported = ("json", "jsonl", "msg")
raise ValueError(Errors.E124.format(path=path2str(loc), formats=supported))
2017-05-22 18:40:46 +03:00
for item in gold_tuples:
yield item
2017-06-05 04:18:20 +03:00
i += len(item[1])
if limit and i >= limit:
return
@property
def dev_tuples(self):
locs = (self.tmp_dir / "dev").iterdir()
yield from self.read_tuples(locs, limit=self.limit)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
@property
def train_tuples(self):
locs = (self.tmp_dir / "train").iterdir()
yield from self.read_tuples(locs, limit=self.limit)
def count_train(self):
n = 0
2017-06-05 04:18:20 +03:00
i = 0
for raw_text, paragraph_tuples in self.train_tuples:
for sent_tuples, brackets in paragraph_tuples:
n += len(sent_tuples[1])
if self.limit and i >= self.limit:
break
i += 1
return n
def train_docs(self, nlp, gold_preproc=False, max_length=None,
noise_level=0.0, orth_variant_level=0.0,
ignore_misaligned=False):
locs = list((self.tmp_dir / 'train').iterdir())
random.shuffle(locs)
train_tuples = self.read_tuples(locs, limit=self.limit)
gold_docs = self.iter_gold_docs(nlp, train_tuples, gold_preproc,
2017-06-05 04:16:57 +03:00
max_length=max_length,
noise_level=noise_level,
orth_variant_level=orth_variant_level,
make_projective=True,
ignore_misaligned=ignore_misaligned)
yield from gold_docs
def train_docs_without_preprocessing(self, nlp, gold_preproc=False):
gold_docs = self.iter_gold_docs(nlp, self.train_tuples, gold_preproc=gold_preproc)
yield from gold_docs
def dev_docs(self, nlp, gold_preproc=False, ignore_misaligned=False):
gold_docs = self.iter_gold_docs(nlp, self.dev_tuples, gold_preproc=gold_preproc,
ignore_misaligned=ignore_misaligned)
yield from gold_docs
@classmethod
2017-06-05 04:16:57 +03:00
def iter_gold_docs(cls, nlp, tuples, gold_preproc, max_length=None,
noise_level=0.0, orth_variant_level=0.0, make_projective=False,
ignore_misaligned=False):
for raw_text, paragraph_tuples in tuples:
if gold_preproc:
raw_text = None
else:
paragraph_tuples = merge_sents(paragraph_tuples)
docs, paragraph_tuples = cls._make_docs(nlp, raw_text,
paragraph_tuples, gold_preproc, noise_level=noise_level,
orth_variant_level=orth_variant_level)
golds = cls._make_golds(docs, paragraph_tuples, make_projective,
ignore_misaligned=ignore_misaligned)
for doc, gold in zip(docs, golds):
if gold is not None:
if (not max_length) or len(doc) < max_length:
yield doc, gold
@classmethod
def _make_docs(cls, nlp, raw_text, paragraph_tuples, gold_preproc, noise_level=0.0, orth_variant_level=0.0):
if raw_text is not None:
raw_text, paragraph_tuples = make_orth_variants(nlp, raw_text, paragraph_tuples, orth_variant_level=orth_variant_level)
2017-06-05 04:16:57 +03:00
raw_text = add_noise(raw_text, noise_level)
return [nlp.make_doc(raw_text)], paragraph_tuples
else:
docs = []
raw_text, paragraph_tuples = make_orth_variants(nlp, None, paragraph_tuples, orth_variant_level=orth_variant_level)
return [Doc(nlp.vocab, words=add_noise(sent_tuples[1], noise_level))
for (sent_tuples, brackets) in paragraph_tuples], paragraph_tuples
@classmethod
def _make_golds(cls, docs, paragraph_tuples, make_projective, ignore_misaligned=False):
if len(docs) != len(paragraph_tuples):
n_annots = len(paragraph_tuples)
raise ValueError(Errors.E070.format(n_docs=len(docs), n_annots=n_annots))
golds = []
for doc, (sent_tuples, (cats, brackets)) in zip(docs, paragraph_tuples):
try:
gold = GoldParse.from_annot_tuples(doc, sent_tuples, cats=cats,
make_projective=make_projective)
except AlignmentError:
if ignore_misaligned:
gold = None
else:
raise
golds.append(gold)
return golds
def make_orth_variants(nlp, raw, paragraph_tuples, orth_variant_level=0.0):
if random.random() >= orth_variant_level:
return raw, paragraph_tuples
2019-09-18 22:54:51 +03:00
if random.random() >= 0.5:
lower = True
2019-09-19 01:03:24 +03:00
if raw is not None:
raw = raw.lower()
ndsv = nlp.Defaults.single_orth_variants
ndpv = nlp.Defaults.paired_orth_variants
# modify words in paragraph_tuples
variant_paragraph_tuples = []
for sent_tuples, brackets in paragraph_tuples:
ids, words, tags, heads, labels, ner = sent_tuples
2019-09-18 22:54:51 +03:00
if lower:
words = [w.lower() for w in words]
# single variants
punct_choices = [random.choice(x["variants"]) for x in ndsv]
for word_idx in range(len(words)):
for punct_idx in range(len(ndsv)):
if tags[word_idx] in ndsv[punct_idx]["tags"] \
and words[word_idx] in ndsv[punct_idx]["variants"]:
words[word_idx] = punct_choices[punct_idx]
# paired variants
punct_choices = [random.choice(x["variants"]) for x in ndpv]
for word_idx in range(len(words)):
for punct_idx in range(len(ndpv)):
if tags[word_idx] in ndpv[punct_idx]["tags"] \
and words[word_idx] in itertools.chain.from_iterable(ndpv[punct_idx]["variants"]):
# backup option: random left vs. right from pair
pair_idx = random.choice([0, 1])
# best option: rely on paired POS tags like `` / ''
if len(ndpv[punct_idx]["tags"]) == 2:
pair_idx = ndpv[punct_idx]["tags"].index(tags[word_idx])
# next best option: rely on position in variants
# (may not be unambiguous, so order of variants matters)
else:
for pair in ndpv[punct_idx]["variants"]:
if words[word_idx] in pair:
pair_idx = pair.index(words[word_idx])
words[word_idx] = punct_choices[punct_idx][pair_idx]
variant_paragraph_tuples.append(((ids, words, tags, heads, labels, ner), brackets))
# modify raw to match variant_paragraph_tuples
if raw is not None:
variants = []
for single_variants in ndsv:
variants.extend(single_variants["variants"])
for paired_variants in ndpv:
variants.extend(list(itertools.chain.from_iterable(paired_variants["variants"])))
# store variants in reverse length order to be able to prioritize
# longer matches (e.g., "---" before "--")
variants = sorted(variants, key=lambda x: len(x))
variants.reverse()
variant_raw = ""
raw_idx = 0
# add initial whitespace
while raw_idx < len(raw) and re.match("\s", raw[raw_idx]):
variant_raw += raw[raw_idx]
raw_idx += 1
for sent_tuples, brackets in variant_paragraph_tuples:
ids, words, tags, heads, labels, ner = sent_tuples
for word in words:
match_found = False
# add identical word
if word not in variants and raw[raw_idx:].startswith(word):
variant_raw += word
raw_idx += len(word)
match_found = True
# add variant word
else:
for variant in variants:
if not match_found and \
raw[raw_idx:].startswith(variant):
raw_idx += len(variant)
variant_raw += word
match_found = True
# something went wrong, abort
# (add a warning message?)
if not match_found:
return raw, paragraph_tuples
# add following whitespace
while raw_idx < len(raw) and re.match("\s", raw[raw_idx]):
variant_raw += raw[raw_idx]
raw_idx += 1
return variant_raw, variant_paragraph_tuples
return raw, variant_paragraph_tuples
2017-06-05 04:16:57 +03:00
def add_noise(orig, noise_level):
if random.random() >= noise_level:
return orig
elif type(orig) == list:
2019-08-29 16:39:32 +03:00
corrupted = [_corrupt(word, noise_level) for word in orig]
2017-06-05 04:16:57 +03:00
corrupted = [w for w in corrupted if w]
return corrupted
else:
2019-08-29 16:39:32 +03:00
return "".join(_corrupt(c, noise_level) for c in orig)
2017-06-05 04:16:57 +03:00
2019-08-29 16:39:32 +03:00
def _corrupt(c, noise_level):
2017-06-05 04:16:57 +03:00
if random.random() >= noise_level:
return c
elif c in [".", "'", "!", "?", ","]:
2019-08-29 16:39:32 +03:00
return "\n"
2017-06-05 04:16:57 +03:00
else:
return c.lower()
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
def read_json_object(json_corpus_section):
"""Take a list of JSON-formatted documents (e.g. from an already loaded
training data file) and yield tuples in the GoldParse format.
json_corpus_section (list): The data.
YIELDS (tuple): The reformatted data.
"""
for json_doc in json_corpus_section:
tuple_doc = json_to_tuple(json_doc)
for tuple_paragraph in tuple_doc:
yield tuple_paragraph
def json_to_tuple(doc):
"""Convert an item in the JSON-formatted training data to the tuple format
used by GoldParse.
doc (dict): One entry in the training data.
YIELDS (tuple): The reformatted data.
"""
paragraphs = []
for paragraph in doc["paragraphs"]:
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
sents = []
cats = {}
for cat in paragraph.get("cats", {}):
cats[cat["label"]] = cat["value"]
for sent in paragraph["sentences"]:
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
words = []
ids = []
tags = []
heads = []
labels = []
ner = []
for i, token in enumerate(sent["tokens"]):
words.append(token["orth"])
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
ids.append(i)
tags.append(token.get('tag', "-"))
heads.append(token.get("head", 0) + i)
labels.append(token.get("dep", ""))
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
# Ensure ROOT label is case-insensitive
if labels[-1].lower() == "root":
labels[-1] = "ROOT"
ner.append(token.get("ner", "-"))
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
sents.append([
[ids, words, tags, heads, labels, ner],
[cats, sent.get("brackets", [])]])
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
if sents:
yield [paragraph.get("raw", None), sents]
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
def read_json_file(loc, docs_filter=None, limit=None):
2017-10-27 22:07:59 +03:00
loc = util.ensure_path(loc)
2017-04-15 13:13:00 +03:00
if loc.is_dir():
for filename in loc.iterdir():
yield from read_json_file(loc / filename, limit=limit)
else:
for doc in _json_iterate(loc):
if docs_filter is not None and not docs_filter(doc):
continue
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
for json_tuple in json_to_tuple(doc):
yield json_tuple
2015-05-06 17:27:31 +03:00
def _json_iterate(loc):
# We should've made these files jsonl...But since we didn't, parse out
# the docs one-by-one to reduce memory usage.
# It's okay to read in the whole file -- just don't parse it into JSON.
cdef bytes py_raw
loc = util.ensure_path(loc)
with loc.open("rb") as file_:
py_raw = file_.read()
cdef long file_length = len(py_raw)
if file_length > 2 ** 30:
user_warning(Warnings.W027.format(size=file_length))
raw = <char*>py_raw
cdef int square_depth = 0
cdef int curly_depth = 0
cdef int inside_string = 0
cdef int escape = 0
cdef long start = -1
cdef char c
cdef char quote = ord('"')
cdef char backslash = ord("\\")
cdef char open_square = ord("[")
cdef char close_square = ord("]")
cdef char open_curly = ord("{")
cdef char close_curly = ord("}")
for i in range(file_length):
c = raw[i]
if escape:
escape = False
continue
if c == backslash:
escape = True
continue
if c == quote:
inside_string = not inside_string
continue
if inside_string:
continue
if c == open_square:
square_depth += 1
elif c == close_square:
square_depth -= 1
elif c == open_curly:
if square_depth == 1 and curly_depth == 0:
start = i
curly_depth += 1
elif c == close_curly:
curly_depth -= 1
if square_depth == 1 and curly_depth == 0:
py_str = py_raw[start : i + 1].decode("utf8")
2018-08-14 15:03:48 +03:00
try:
yield srsly.json_loads(py_str)
except Exception:
2018-08-14 15:03:48 +03:00
print(py_str)
raise
start = -1
2017-05-26 19:32:55 +03:00
def iob_to_biluo(tags):
out = []
tags = list(tags)
while tags:
out.extend(_consume_os(tags))
out.extend(_consume_ent(tags))
return out
def _consume_os(tags):
while tags and tags[0] == "O":
yield tags.pop(0)
def _consume_ent(tags):
if not tags:
return []
tag = tags.pop(0)
target_in = "I" + tag[1:]
target_last = "L" + tag[1:]
length = 1
while tags and tags[0] in {target_in, target_last}:
length += 1
tags.pop(0)
label = tag[2:]
if length == 1:
if len(label) == 0:
raise ValueError(Errors.E177.format(tag=tag))
return ["U-" + label]
else:
start = "B-" + label
end = "L-" + label
middle = ["I-%s" % label for _ in range(1, length - 1)]
return [start] + middle + [end]
2015-03-09 08:46:22 +03:00
cdef class GoldParse:
"""Collection for training annotations.
DOCS: https://spacy.io/api/goldparse
"""
@classmethod
def from_annot_tuples(cls, doc, annot_tuples, cats=None, make_projective=False):
_, words, tags, heads, deps, entities = annot_tuples
2017-10-27 18:02:55 +03:00
return cls(doc, words=words, tags=tags, heads=heads, deps=deps,
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 23:31:31 +03:00
entities=entities, cats=cats,
make_projective=make_projective)
2018-09-25 22:34:53 +03:00
def __init__(self, doc, annot_tuples=None, words=None, tags=None, morphology=None,
2017-10-27 18:02:55 +03:00
heads=None, deps=None, entities=None, make_projective=False,
2019-06-07 14:54:45 +03:00
cats=None, links=None, **_):
"""Create a GoldParse. The fields will not be initialized if len(doc) is zero.
doc (Doc): The document the annotations refer to.
words (iterable): A sequence of unicode word strings.
tags (iterable): A sequence of strings, representing tag annotations.
2017-10-27 18:02:55 +03:00
heads (iterable): A sequence of integers, representing syntactic
head offsets.
deps (iterable): A sequence of strings, representing the syntactic
relation types.
entities (iterable): A sequence of named entity annotations, either as
BILUO tag strings, or as `(start_char, end_char, label)` tuples,
representing the entity positions.
cats (dict): Labels for text classification. Each key in the dictionary
may be a string or an int, or a `(start_char, end_char, label)`
tuple, indicating that the label is applied to only part of the
document (usually a sentence). Unlike entity annotations, label
annotations can overlap, i.e. a single word can be covered by
multiple labelled spans. The TextCategorizer component expects
2017-10-27 18:02:55 +03:00
true examples of a label to have the value 1.0, and negative
examples of a label to have the value 0.0. Labels not in the
dictionary are treated as missing - the gradient for those labels
will be zero.
links (dict): A dict with `(start_char, end_char)` keys,
and the values being dicts with kb_id:value entries,
representing the external IDs in a knowledge base (KB)
mapped to either 1.0 or 0.0, indicating positive and
negative examples respectively.
RETURNS (GoldParse): The newly constructed object.
2016-11-01 14:25:36 +03:00
"""
2015-03-09 08:46:22 +03:00
self.mem = Pool()
self.loss = 0
2016-10-16 00:55:07 +03:00
self.length = len(doc)
2015-03-09 08:46:22 +03:00
self.cats = {} if cats is None else dict(cats)
2019-06-07 14:54:45 +03:00
self.links = links
# avoid allocating memory if the doc does not contain any tokens
if self.length > 0:
if words is None:
words = [token.text for token in doc]
if tags is None:
tags = [None for _ in words]
if heads is None:
heads = [None for _ in words]
if deps is None:
deps = [None for _ in words]
if morphology is None:
morphology = [None for _ in words]
if entities is None:
entities = ["-" for _ in words]
elif len(entities) == 0:
entities = ["O" for _ in words]
else:
# Translate the None values to '-', to make processing easier.
# See Issue #2603
entities = [(ent if ent is not None else "-") for ent in entities]
if not isinstance(entities[0], basestring):
# Assume we have entities specified by character offset.
entities = biluo_tags_from_offsets(doc, entities)
# These are filled by the tagger/parser/entity recogniser
self.c.tags = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.heads = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.labels = <attr_t*>self.mem.alloc(len(doc), sizeof(attr_t))
self.c.has_dep = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.sent_start = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.ner = <Transition*>self.mem.alloc(len(doc), sizeof(Transition))
self.words = [None] * len(doc)
self.tags = [None] * len(doc)
self.heads = [None] * len(doc)
self.labels = [None] * len(doc)
self.ner = [None] * len(doc)
self.morphology = [None] * len(doc)
# This needs to be done before we align the words
if make_projective and heads is not None and deps is not None:
heads, deps = nonproj.projectivize(heads, deps)
# Do many-to-one alignment for misaligned tokens.
# If we over-segment, we'll have one gold word that covers a sequence
# of predicted words
# If we under-segment, we'll have one predicted word that covers a
# sequence of gold words.
# If we "mis-segment", we'll have a sequence of predicted words covering
# a sequence of gold words. That's many-to-many -- we don't do that.
cost, i2j, j2i, i2j_multi, j2i_multi = align([t.orth_ for t in doc], words)
self.cand_to_gold = [(j if j >= 0 else None) for j in i2j]
self.gold_to_cand = [(i if i >= 0 else None) for i in j2i]
annot_tuples = (range(len(words)), words, tags, heads, deps, entities)
self.orig_annot = list(zip(*annot_tuples))
for i, gold_i in enumerate(self.cand_to_gold):
if doc[i].text.isspace():
self.words[i] = doc[i].text
self.tags[i] = "_SP"
2017-05-26 01:15:09 +03:00
self.heads[i] = None
self.labels[i] = None
self.ner[i] = None
self.morphology[i] = set()
if gold_i is None:
if i in i2j_multi:
self.words[i] = words[i2j_multi[i]]
self.tags[i] = tags[i2j_multi[i]]
self.morphology[i] = morphology[i2j_multi[i]]
is_last = i2j_multi[i] != i2j_multi.get(i+1)
is_first = i2j_multi[i] != i2j_multi.get(i-1)
# Set next word in multi-token span as head, until last
if not is_last:
self.heads[i] = i+1
self.labels[i] = "subtok"
else:
head_i = heads[i2j_multi[i]]
if head_i:
self.heads[i] = self.gold_to_cand[head_i]
self.labels[i] = deps[i2j_multi[i]]
# Now set NER...This is annoying because if we've split
# got an entity word split into two, we need to adjust the
# BILUO tags. We can't have BB or LL etc.
# Case 1: O -- easy.
ner_tag = entities[i2j_multi[i]]
if ner_tag == "O":
self.ner[i] = "O"
# Case 2: U. This has to become a B I* L sequence.
elif ner_tag.startswith("U-"):
if is_first:
self.ner[i] = ner_tag.replace("U-", "B-", 1)
elif is_last:
self.ner[i] = ner_tag.replace("U-", "L-", 1)
else:
self.ner[i] = ner_tag.replace("U-", "I-", 1)
# Case 3: L. If not last, change to I.
elif ner_tag.startswith("L-"):
if is_last:
self.ner[i] = ner_tag
else:
self.ner[i] = ner_tag.replace("L-", "I-", 1)
# Case 4: I. Stays correct
elif ner_tag.startswith("I-"):
self.ner[i] = ner_tag
2017-05-26 01:15:09 +03:00
else:
self.words[i] = words[gold_i]
self.tags[i] = tags[gold_i]
self.morphology[i] = morphology[gold_i]
if heads[gold_i] is None:
self.heads[i] = None
else:
self.heads[i] = self.gold_to_cand[heads[gold_i]]
self.labels[i] = deps[gold_i]
self.ner[i] = entities[gold_i]
# Prevent whitespace that isn't within entities from being tagged as
# an entity.
for i in range(len(self.ner)):
if self.tags[i] == "_SP":
prev_ner = self.ner[i-1] if i >= 1 else None
next_ner = self.ner[i+1] if (i+1) < len(self.ner) else None
if prev_ner == "O" or next_ner == "O":
self.ner[i] = "O"
cycle = nonproj.contains_cycle(self.heads)
if cycle is not None:
raise ValueError(Errors.E069.format(cycle=cycle,
cycle_tokens=" ".join(["'{}'".format(self.words[tok_id]) for tok_id in cycle]),
doc_tokens=" ".join(words[:50])))
def __len__(self):
"""Get the number of gold-standard tokens.
2017-03-15 17:29:42 +03:00
RETURNS (int): The number of gold-standard tokens.
2016-11-01 14:25:36 +03:00
"""
return self.length
2015-03-09 08:46:22 +03:00
@property
def is_projective(self):
"""Whether the provided syntactic annotations form a projective
dependency tree.
"""
return not nonproj.is_nonproj_tree(self.heads)
property sent_starts:
def __get__(self):
return [self.c.sent_start[i] for i in range(self.length)]
def __set__(self, sent_starts):
for gold_i, is_sent_start in enumerate(sent_starts):
i = self.gold_to_cand[gold_i]
if i is not None:
if is_sent_start in (1, True):
self.c.sent_start[i] = 1
elif is_sent_start in (-1, False):
self.c.sent_start[i] = -1
else:
self.c.sent_start[i] = 0
2015-02-21 19:06:58 +03:00
def docs_to_json(docs, id=0, ner_missing_tag="O"):
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
"""Convert a list of Doc objects into the JSON-serializable format used by
the spacy train command.
docs (iterable / Doc): The Doc object(s) to convert.
id (int): Id for the JSON.
2019-10-28 14:36:23 +03:00
RETURNS (dict): The data in spaCy's JSON format
- each input doc will be treated as a paragraph in the output doc
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
"""
if isinstance(docs, Doc):
docs = [docs]
json_doc = {"id": id, "paragraphs": []}
for i, doc in enumerate(docs):
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 23:31:31 +03:00
json_para = {'raw': doc.text, "sentences": [], "cats": []}
for cat, val in doc.cats.items():
json_cat = {"label": cat, "value": val}
json_para["cats"].append(json_cat)
ent_offsets = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
biluo_tags = biluo_tags_from_offsets(doc, ent_offsets, missing=ner_missing_tag)
for j, sent in enumerate(doc.sents):
json_sent = {"tokens": [], "brackets": []}
for token in sent:
json_token = {"id": token.i, "orth": token.text}
if doc.is_tagged:
json_token["tag"] = token.tag_
if doc.is_parsed:
json_token["head"] = token.head.i-token.i
json_token["dep"] = token.dep_
json_token["ner"] = biluo_tags[token.i]
json_sent["tokens"].append(json_token)
json_para["sentences"].append(json_sent)
json_doc["paragraphs"].append(json_para)
2019-04-08 13:53:16 +03:00
return json_doc
def biluo_tags_from_offsets(doc, entities, missing="O"):
2017-10-27 18:02:55 +03:00
"""Encode labelled spans into per-token tags, using the
Begin/In/Last/Unit/Out scheme (BILUO).
doc (Doc): The document that the entity offsets refer to. The output tags
will refer to the token boundaries within the document.
2017-10-27 18:02:55 +03:00
entities (iterable): A sequence of `(start, end, label)` triples. `start`
and `end` should be character-offset integers denoting the slice into
the original string.
RETURNS (list): A list of unicode strings, describing the tags. Each tag
string will be of the form either "", "O" or "{action}-{label}", where
action is one of "B", "I", "L", "U". The string "-" is used where the
2017-10-27 18:02:55 +03:00
entity offsets don't align with the tokenization in the `Doc` object.
The training algorithm will view these as missing values. "O" denotes a
non-entity token. "B" denotes the beginning of a multi-token entity,
"I" the inside of an entity of three or more tokens, and "L" the end
of an entity of two or more tokens. "U" denotes a single-token entity.
EXAMPLE:
>>> text = 'I like London.'
>>> entities = [(len('I like '), len('I like London'), 'LOC')]
>>> doc = nlp.tokenizer(text)
>>> tags = biluo_tags_from_offsets(doc, entities)
>>> assert tags == ["O", "O", 'U-LOC', "O"]
"""
# Ensure no overlapping entity labels exist
tokens_in_ents = {}
2019-10-28 14:36:23 +03:00
starts = {token.idx: token.i for token in doc}
ends = {token.idx + len(token): token.i for token in doc}
biluo = ["-" for _ in doc]
# Handle entity cases
for start_char, end_char, label in entities:
for token_index in range(start_char, end_char):
if token_index in tokens_in_ents.keys():
raise ValueError(Errors.E103.format(
span1=(tokens_in_ents[token_index][0],
tokens_in_ents[token_index][1],
tokens_in_ents[token_index][2]),
span2=(start_char, end_char, label)))
tokens_in_ents[token_index] = (start_char, end_char, label)
start_token = starts.get(start_char)
end_token = ends.get(end_char)
# Only interested if the tokenization is correct
if start_token is not None and end_token is not None:
if start_token == end_token:
biluo[start_token] = "U-%s" % label
else:
biluo[start_token] = "B-%s" % label
for i in range(start_token+1, end_token):
biluo[i] = "I-%s" % label
biluo[end_token] = "L-%s" % label
# Now distinguish the O cases from ones where we miss the tokenization
entity_chars = set()
for start_char, end_char, label in entities:
for i in range(start_char, end_char):
entity_chars.add(i)
for token in doc:
for i in range(token.idx, token.idx + len(token)):
if i in entity_chars:
break
else:
biluo[token.i] = missing
return biluo
def spans_from_biluo_tags(doc, tags):
"""Encode per-token tags following the BILUO scheme into Span object, e.g.
to overwrite the doc.ents.
doc (Doc): The document that the BILUO tags refer to.
entities (iterable): A sequence of BILUO tags with each tag describing one
token. Each tags string will be of the form of either "", "O" or
"{action}-{label}", where action is one of "B", "I", "L", "U".
RETURNS (list): A sequence of Span objects.
"""
token_offsets = tags_to_entities(tags)
spans = []
for label, start_idx, end_idx in token_offsets:
span = Span(doc, start_idx, end_idx + 1, label=label)
spans.append(span)
return spans
def offsets_from_biluo_tags(doc, tags):
"""Encode per-token tags following the BILUO scheme into entity offsets.
doc (Doc): The document that the BILUO tags refer to.
entities (iterable): A sequence of BILUO tags with each tag describing one
token. Each tags string will be of the form of either "", "O" or
"{action}-{label}", where action is one of "B", "I", "L", "U".
RETURNS (list): A sequence of `(start, end, label)` triples. `start` and
`end` will be character-offset integers denoting the slice into the
original string.
"""
spans = spans_from_biluo_tags(doc, tags)
return [(span.start_char, span.end_char, span.label_) for span in spans]
2015-02-21 19:06:58 +03:00
def is_punct_label(label):
return label == "P" or label.lower() == "punct"