In the reference implementations, there's usually a function to build a
ffnn of arbitrary depth, consisting of a stack of Linear >> Relu >>
Dropout. In practice the depth is always 1 in coref-hoi, but in earlier
iterations of the model, which are more similar to our model here (since
we aren't using attention or even necessarily BERT), using a small depth
like 2 was common. This hard-codes a stack of 2.
In brief tests this allows similar performance to the unstacked version
with much smaller embedding sizes.
The depth of the stack could be made into a hyperparameter.
This generall means fewer spans are considered, which makes individual
steps in training faster but can make training take longer to find the
good spans.
This calculates scores as an average of three metrics. As noted in the
code, these metrics all have issues, but we want to use them to match up
with prior work.
This should be replaced with some simpler default scoring and the scorer
here should be moved to an external project to be passed in just for
generating the traditional scores.
This test was failing not because the thing it was testing wasn't
working, but because of the way span equality works. Span equality
relies on doc equality, and doc equality is object identity, so spans
from different docs will never be equal.
* avoid msg var impliciteness
* rename local msg
* Add CI tests for debug data and train
* Adjust debug data CLI test
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Add the right return type for Language.pipe and an overload for the as_tuples version
* Reformat, tidy up
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix vectors check for sourced components
Since vectors are not loaded when components are sourced, store a hash
for the vectors of each sourced component and compare it to the loaded
vectors after the vectors are loaded from the `[initialize]` block.
* Pop temporary info
* Remove stored hash in remove_pipe
* Add default for pop
* Add additional convert/debug/assemble CLI tests
* Raise an error for textcat with <2 labels
Raise an error if initializing a `textcat` component without at least
two labels.
* Add similar note to docs
* Update positive_label description in API docs
Not necessary for convergence, but in coref-hoi this seems to add a few
f1 points.
Note that there are two width-related features in coref-hoi. This is a
"prior" that is added to mention scores. The other width related feature
is appended to the span embedding representation for other layers to
reference.
This rewrites the loss to not use the Thinc crossentropy code at all.
The main difference here is that the negative predictions are being
masked out (= marginalized over), but negative gradient is still being
reflected.
I'm still not sure this is exactly right but models seem to train
reliably now.
The calculation of this in the coref-hoi code is hard to follow. Based
on comments and variable names it sounds like it's using the doc length,
but it might actually be the number of mentions? Number of mentions
should be much larger and seems more correct, but might want to revisit
this.
I think this was technically incorrect but harmless. The reason the code
here is different than the reference in coref-hoi is that the indices
there are such that they get +1 at the end of processing, while the code
here handles indices directly.