This was the only registry that expected the registered objects to be dictionaries instead of functions that return something. We can still support plain dicts but we should also support functions for consistency
The Language.use_params method was failing if you passed in None, which
meant we had to use awkward conditionals for the parameter averaging.
This solves the problem.
Add official support for the `DependencyMatcher`. Redesign the pattern
specification. Fix and extend operator implementations. Update API docs
and add usage docs.
Patterns
--------
Refactor pattern structure to:
```
{
"LEFT_ID": str,
"REL_OP": str,
"RIGHT_ID": str,
"RIGHT_ATTRS": dict,
}
```
The first node contains only `RIGHT_ID` and `RIGHT_ATTRS` and all
subsequent nodes contain all four keys.
New operators
-------------
Because of the way patterns are constructed from left to right, it's
helpful to have `follows` operators along with `precedes` operators. Add
operators for simple precedes / follows alongside immediate precedes /
follows.
* `.*`: precedes
* `;`: immediately follows
* `;*`: follows
Operator fixes
--------------
* `<` and `<<` do not include the node itself
* Fix reversed order for all operators involving linear precedence (`.`,
all sibling operators)
* Linear precedence operators do not match nodes outside the same parse
Additional fixes
----------------
* Use v3 Matcher API
* Support `get` and `remove`
* Support pickling
Follow-ups to the parser efficiency fix.
* Avoid introducing new counter for number of pushes
* Base cut on number of transitions, keeping it more even
* Reintroduce the randomization we had in v2.
The parser training makes use of a trick for long documents, where we
use the oracle to cut up the document into sections, so that we can have
batch items in the middle of a document. For instance, if we have one
document of 600 words, we might make 6 states, starting at words 0, 100,
200, 300, 400 and 500.
The problem is for v3, I screwed this up and didn't stop parsing! So
instead of a batch of [100, 100, 100, 100, 100, 100], we'd have a batch
of [600, 500, 400, 300, 200, 100]. Oops.
The implementation here could probably be improved, it's annoying to
have this extra variable in the state. But this'll do.
This makes the v3 parser training 5-10 times faster, depending on document
lengths. This problem wasn't in v2.