Commit Graph

608 Commits

Author SHA1 Message Date
adrianeboyd
a365359b36
Add convert CLI option to merge CoNLL-U subtokens (#4722)
* Add convert CLI option to merge CoNLL-U subtokens

Add `-T` option to convert CLI that merges CoNLL-U subtokens into one
token in the converted data. Each CoNLL-U sentence is read into a `Doc`
and the `Retokenizer` is used to merge subtokens with features as
follows:

* `orth` is the merged token orth (should correspond to raw text and `#
text`)

* `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET`

* `pos` is the POS of the syntactic root of the span (as determined by
the Retokenizer)

* `morph` is all morphological features merged

* `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o`

* with `-m` all morphological features are combined with the tag using
the separator `__`, e.g.
`ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art`

* `dep` is the dependency relation for the syntactic root of the span
(as determined by the Retokenizer)

Concatenated tags will be mapped to the UD POS of the syntactic root
(e.g., `ADP`) and the morphological features will be the combined
features.

In many cases, the original UD subtokens can be reconstructed from the
available features given a language-specific lookup table, e.g.,
Portuguese `do / ADP_DET /
Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o /
DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules
for forms containing open class words like Spanish `hablarlo / VERB_PRON
/
Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`.

* Clean up imports
2020-01-29 17:44:25 +01:00
Sofie Van Landeghem
569cc98982
Update spaCy for thinc 8.0.0 (#4920)
* Add load_from_config function

* Add train_from_config script

* Merge configs and expose via spacy.config

* Fix script

* Suggest create_evaluation_callback

* Hard-code for NER

* Fix errors

* Register command

* Add TODO

* Update train-from-config todos

* Fix imports

* Allow delayed setting of parser model nr_class

* Get train-from-config working

* Tidy up and fix scores and printing

* Hide traceback if cancelled

* Fix weighted score formatting

* Fix score formatting

* Make output_path optional

* Add Tok2Vec component

* Tidy up and add tok2vec_tensors

* Add option to copy docs in nlp.update

* Copy docs in nlp.update

* Adjust nlp.update() for set_annotations

* Don't shuffle pipes in nlp.update, decruft

* Support set_annotations arg in component update

* Support set_annotations in parser update

* Add get_gradients method

* Add get_gradients to parser

* Update errors.py

* Fix problems caused by merge

* Add _link_components method in nlp

* Add concept of 'listeners' and ControlledModel

* Support optional attributes arg in ControlledModel

* Try having tok2vec component in pipeline

* Fix tok2vec component

* Fix config

* Fix tok2vec

* Update for Example

* Update for Example

* Update config

* Add eg2doc util

* Update and add schemas/types

* Update schemas

* Fix nlp.update

* Fix tagger

* Remove hacks from train-from-config

* Remove hard-coded config str

* Calculate loss in tok2vec component

* Tidy up and use function signatures instead of models

* Support union types for registry models

* Minor cleaning in Language.update

* Make ControlledModel specifically Tok2VecListener

* Fix train_from_config

* Fix tok2vec

* Tidy up

* Add function for bilstm tok2vec

* Fix type

* Fix syntax

* Fix pytorch optimizer

* Add example configs

* Update for thinc describe changes

* Update for Thinc changes

* Update for dropout/sgd changes

* Update for dropout/sgd changes

* Unhack gradient update

* Work on refactoring _ml

* Remove _ml.py module

* WIP upgrade cli scripts for thinc

* Move some _ml stuff to util

* Import link_vectors from util

* Update train_from_config

* Import from util

* Import from util

* Temporarily add ml.component_models module

* Move ml methods

* Move typedefs

* Update load vectors

* Update gitignore

* Move imports

* Add PrecomputableAffine

* Fix imports

* Fix imports

* Fix imports

* Fix missing imports

* Update CLI scripts

* Update spacy.language

* Add stubs for building the models

* Update model definition

* Update create_default_optimizer

* Fix import

* Fix comment

* Update imports in tests

* Update imports in spacy.cli

* Fix import

* fix obsolete thinc imports

* update srsly pin

* from thinc to ml_datasets for example data such as imdb

* update ml_datasets pin

* using STATE.vectors

* small fix

* fix Sentencizer.pipe

* black formatting

* rename Affine to Linear as in thinc

* set validate explicitely to True

* rename with_square_sequences to with_list2padded

* rename with_flatten to with_list2array

* chaining layernorm

* small fixes

* revert Optimizer import

* build_nel_encoder with new thinc style

* fixes using model's get and set methods

* Tok2Vec in component models, various fixes

* fix up legacy tok2vec code

* add model initialize calls

* add in build_tagger_model

* small fixes

* setting model dims

* fixes for ParserModel

* various small fixes

* initialize thinc Models

* fixes

* consistent naming of window_size

* fixes, removing set_dropout

* work around Iterable issue

* remove legacy tok2vec

* util fix

* fix forward function of tok2vec listener

* more fixes

* trying to fix PrecomputableAffine (not succesful yet)

* alloc instead of allocate

* add morphologizer

* rename residual

* rename fixes

* Fix predict function

* Update parser and parser model

* fixing few more tests

* Fix precomputable affine

* Update component model

* Update parser model

* Move backprop padding to own function, for test

* Update test

* Fix p. affine

* Update NEL

* build_bow_text_classifier and extract_ngrams

* Fix parser init

* Fix test add label

* add build_simple_cnn_text_classifier

* Fix parser init

* Set gpu off by default in example

* Fix tok2vec listener

* Fix parser model

* Small fixes

* small fix for PyTorchLSTM parameters

* revert my_compounding hack (iterable fixed now)

* fix biLSTM

* Fix uniqued

* PyTorchRNNWrapper fix

* small fixes

* use helper function to calculate cosine loss

* small fixes for build_simple_cnn_text_classifier

* putting dropout default at 0.0 to ensure the layer gets built

* using thinc util's set_dropout_rate

* moving layer normalization inside of maxout definition to optimize dropout

* temp debugging in NEL

* fixed NEL model by using init defaults !

* fixing after set_dropout_rate refactor

* proper fix

* fix test_update_doc after refactoring optimizers in thinc

* Add CharacterEmbed layer

* Construct tagger Model

* Add missing import

* Remove unused stuff

* Work on textcat

* fix test (again :)) after optimizer refactor

* fixes to allow reading Tagger from_disk without overwriting dimensions

* don't build the tok2vec prematuraly

* fix CharachterEmbed init

* CharacterEmbed fixes

* Fix CharacterEmbed architecture

* fix imports

* renames from latest thinc update

* one more rename

* add initialize calls where appropriate

* fix parser initialization

* Update Thinc version

* Fix errors, auto-format and tidy up imports

* Fix validation

* fix if bias is cupy array

* revert for now

* ensure it's a numpy array before running bp in ParserStepModel

* no reason to call require_gpu twice

* use CupyOps.to_numpy instead of cupy directly

* fix initialize of ParserModel

* remove unnecessary import

* fixes for CosineDistance

* fix device renaming

* use refactored loss functions (Thinc PR 251)

* overfitting test for tagger

* experimental settings for the tagger: avoid zero-init and subword normalization

* clean up tagger overfitting test

* use previous default value for nP

* remove toy config

* bringing layernorm back (had a bug - fixed in thinc)

* revert setting nP explicitly

* remove setting default in constructor

* restore values as they used to be

* add overfitting test for NER

* add overfitting test for dep parser

* add overfitting test for textcat

* fixing init for linear (previously affine)

* larger eps window for textcat

* ensure doc is not None

* Require newer thinc

* Make float check vaguer

* Slop the textcat overfit test more

* Fix textcat test

* Fix exclusive classes for textcat

* fix after renaming of alloc methods

* fixing renames and mandatory arguments (staticvectors WIP)

* upgrade to thinc==8.0.0.dev3

* refer to vocab.vectors directly instead of its name

* rename alpha to learn_rate

* adding hashembed and staticvectors dropout

* upgrade to thinc 8.0.0.dev4

* add name back to avoid warning W020

* thinc dev4

* update srsly

* using thinc 8.0.0a0 !

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 17:06:46 +01:00
adrianeboyd
90c52128dc Improve train CLI with base model (#4911)
Improve train CLI with a provided base model so that you can:

* add a new component
* extend an existing component
* replace an existing component

When the final model and best model are saved, reenable any disabled
components and merge the meta information to include the full pipeline
and accuracy information for all components in the base model plus the
newly added components if needed.
2020-01-16 01:58:51 +01:00
adrianeboyd
d2f3a44b42 Improve train CLI sentrec scoring (#4892)
* reorder to metrics to prioritize F over P/R
* add sentrec to model metrics
2020-01-08 16:52:14 +01:00
adrianeboyd
e55fa1899a Report length of dev dataset correctly (#4891) 2020-01-08 16:51:51 +01:00
Sofie Van Landeghem
6e9b61b49d add warning in debug_data for punctuation in entities (#4853) 2020-01-06 14:59:28 +01:00
Ines Montani
83e0a6f3e3
Modernize plac commands for Python 3 (#4836) 2020-01-01 13:15:46 +01:00
Ines Montani
a892821c51 More formatting changes 2019-12-25 17:59:52 +01:00
Ines Montani
33a2682d60
Add better schemas and validation using Pydantic (#4831)
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Add better schemas and validation using Pydantic

* Revert lookups.md

* Remove unused import

* Update spacy/schemas.py

Co-Authored-By: Sebastián Ramírez <tiangolo@gmail.com>

* Various small fixes

* Fix docstring

Co-authored-by: Sebastián Ramírez <tiangolo@gmail.com>
2019-12-25 12:39:49 +01:00
Ines Montani
db55577c45
Drop Python 2.7 and 3.5 (#4828)
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Revert lookups.md

* Revert top-level.md

* Small adjustments and docs [ci skip]
2019-12-22 01:53:56 +01:00
Ines Montani
158b98a3ef Merge branch 'master' into develop 2019-12-21 18:55:03 +01:00
Sofie Van Landeghem
12158c1e3a Restore tqdm imports (#4804)
* set 4.38.0 to minimal version with color bug fix

* set imports back to proper place

* add upper range for tqdm
2019-12-16 13:12:19 +01:00
adrianeboyd
a4cacd3402 Add tag_map argument to CLI debug-data and train (#4750)
Add an argument for a path to a JSON-formatted tag map, which is used to
update and extend the default language tag map.
2019-12-13 10:46:18 +01:00
adrianeboyd
eb9b1858c4 Add NER map option to convert CLI (#4763)
Instead of a hard-coded NER tag simplification function that was only
intended for NorNE, map NER tags in CoNLL-U converter using a dict
provided as JSON as a command-line option.

Map NER entity types or new tag or to "" for 'O', e.g.:

```
{"PER": "PERSON", "BAD": ""}

=>

B-PER -> B-PERSON
B-BAD -> O
```
2019-12-11 18:20:49 +01:00
adrianeboyd
68f711b409 Fix conllu2json n_sents and raw text (#4728)
Update conllu2json converter to include raw text in final batch.
2019-11-29 10:22:03 +01:00
adrianeboyd
b841d3fe75 Add a tagger-based SentenceRecognizer (#4713)
* Add sent_starts to GoldParse

* Add SentTagger pipeline component

Add `SentTagger` pipeline component as a subclass of `Tagger`.

* Model reduces default parameters from `Tagger` to be small and fast
* Hard-coded set of two labels:
  * S (1): token at beginning of sentence
  * I (0): all other sentence positions
* Sets `token.sent_start` values

* Add sentence segmentation to Scorer

Report `sent_p/r/f` for sentence boundaries, which may be provided by
various pipeline components.

* Add sentence segmentation to CLI evaluate

* Add senttagger metrics/scoring to train CLI

* Rename SentTagger to SentenceRecognizer

* Add SentenceRecognizer to spacy.pipes imports

* Add SentenceRecognizer serialization test

* Shorten component name to sentrec

* Remove duplicates from train CLI output metrics
2019-11-28 11:10:07 +01:00
adrianeboyd
9efd3ccbef Update conllu2json MISC column handling (#4715)
Update converter to handle various things in MISC column:

* `SpaceAfter=No` and set raw text accordingly
* plain NER tag
* name=NER (for NorNE)
2019-11-26 16:10:08 +01:00
adrianeboyd
9aab0a55e1 Fix conllu2json converter to output all sentences (#4716)
Make sure that the last batch of sentences is output if n_sents > 1.
2019-11-26 16:05:17 +01:00
adrianeboyd
392c4880d9 Restructure Example with merged sents as default (#4632)
* Switch to train_dataset() function in train CLI

* Fixes for pipe() methods in pipeline components

* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`

* Update Parser.pipe() for Examples

* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s

* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)

* Fixes to Example implementation in spacy.gold

* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`

* Head of 0 are not treated as unset

* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)

* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example

* Don't clobber `examples` variable in `iter_gold_docs()`

* Add/modify gold tests for handling projectivity

* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)

* Add test for projective train vs. nonprojective dev versions of the
same `Doc`

* Handle ignore_misaligned as arg rather than attr

Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.

Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).

* Remove unused attrs from gold.pxd

Remove `ignore_misaligned` and `make_projective` from `gold.pxd`

* Restructure Example with merged sents as default

An `Example` now includes a single `TokenAnnotation` that includes all
the information from one `Doc` (=JSON `paragraph`). If required, the
individual sentences can be returned as a list of examples with
`Example.split_sents()` with no raw text available.

* Input/output a single `Example.token_annotation`

* Add `sent_starts` to `TokenAnnotation` to handle sentence boundaries

* Replace `Example.merge_sents()` with `Example.split_sents()`

* Modify components to use a single `Example.token_annotation`

  * Pipeline components
  * conllu2json converter

* Rework/rename `add_token_annotation()` and `add_doc_annotation()` to
`set_token_annotation()` and `set_doc_annotation()`, functions that set
rather then appending/extending.

* Rename `morphology` to `morphs` in `TokenAnnotation` and `GoldParse`

* Add getters to `TokenAnnotation` to supply default values when a given
attribute is not available

* `Example.get_gold_parses()` in `spacy.gold._make_golds()` is only
applied on single examples, so the `GoldParse` is returned saved in the
provided `Example` rather than creating a new `Example` with no other
internal annotation

* Update tests for API changes and `merge_sents()` vs. `split_sents()`

* Refer to Example.goldparse in iter_gold_docs()

Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError

* Fix make_orth_variants()

Fix bug in make_orth_variants() related to conversion from multiple to
one TokenAnnotation per Example.

* Add basic test for make_orth_variants()

* Replace try/except with conditionals

* Replace default morph value with set
2019-11-25 16:03:28 +01:00
adrianeboyd
44829950ba Fix Example details for train CLI / pipeline components (#4624)
* Switch to train_dataset() function in train CLI

* Fixes for pipe() methods in pipeline components

* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`

* Update Parser.pipe() for Examples

* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s

* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)

* Fixes to Example implementation in spacy.gold

* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`

* Head of 0 are not treated as unset

* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)

* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example

* Don't clobber `examples` variable in `iter_gold_docs()`

* Add/modify gold tests for handling projectivity

* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)

* Add test for projective train vs. nonprojective dev versions of the
same `Doc`

* Handle ignore_misaligned as arg rather than attr

Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.

Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).

* Remove unused attrs from gold.pxd

Remove `ignore_misaligned` and `make_projective` from `gold.pxd`

* Refer to Example.goldparse in iter_gold_docs()

Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError

* Update test for ignore_misaligned
2019-11-23 14:32:15 +01:00
adrianeboyd
bdfb696677 Fix conllu2json converter to output all sentences (#4656)
Make sure that the last batch of sentences is output if n_sents > 1.
2019-11-15 17:08:32 +01:00
adrianeboyd
faaa832518 Generalize handling of tokenizer special cases (#4259)
* Generalize handling of tokenizer special cases

Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.

Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:

* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes

Existing tests/settings that couldn't be preserved as before:

* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again

When merged with #4258 (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.

* Remove accidentally added test case

* Really remove accidentally added test

* Reload special cases when necessary

Reload special cases when affixes or token_match are modified. Skip
reloading during initialization.

* Update error code number

* Fix offset and whitespace in Matcher special cases

* Fix offset bugs when merging and splitting tokens
* Set final whitespace on final token in inserted special case

* Improve cache flushing in tokenizer

* Separate cache and specials memory (temporarily)
* Flush cache when adding special cases
* Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()`
are necessary due to this bug:
https://github.com/explosion/preshed/issues/21

* Remove reinitialized PreshMaps on cache flush

* Update UD bin scripts

* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)

* Use special Matcher only for cases with affixes

* Reinsert specials cache checks during normal tokenization for special
cases as much as possible
  * Additionally include specials cache checks while splitting on infixes
  * Since the special Matcher needs consistent affix-only tokenization
    for the special cases themselves, introduce the argument
    `with_special_cases` in order to do tokenization with or without
    specials cache checks
* After normal tokenization, postprocess with special cases Matcher for
special cases containing affixes

* Replace PhraseMatcher with Aho-Corasick

Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.

The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.

Fixes #4308.

* Restore support for pickling

* Fix internal keyword add/remove for numpy arrays

* Add test for #4248, clean up test

* Improve efficiency of special cases handling

* Use PhraseMatcher instead of Matcher
* Improve efficiency of merging/splitting special cases in document
  * Process merge/splits in one pass without repeated token shifting
  * Merge in place if no splits

* Update error message number

* Remove UD script modifications

Only used for timing/testing, should be a separate PR

* Remove final traces of UD script modifications

* Update UD bin scripts

* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)

* Add missing loop for match ID set in search loop

* Remove cruft in matching loop for partial matches

There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.

* Replace dict trie with MapStruct trie

* Fix how match ID hash is stored/added

* Update fix for match ID vocab

* Switch from map_get_unless_missing to map_get

* Switch from numpy array to Token.get_struct_attr

Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.

Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)

* Restructure imports to export find_matches

* Implement full remove()

Remove unnecessary trie paths and free unused maps.

Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.

* Switch to PhraseMatcher.find_matches

* Switch to local cdef functions for span filtering

* Switch special case reload threshold to variable

Refer to variable instead of hard-coded threshold

* Move more of special case retokenize to cdef nogil

Move as much of the special case retokenization to nogil as possible.

* Rewrap sort as stdsort for OS X

* Rewrap stdsort with specific types

* Switch to qsort

* Fix merge

* Improve cmp functions

* Fix realloc

* Fix realloc again

* Initialize span struct while retokenizing

* Temporarily skip retokenizing

* Revert "Move more of special case retokenize to cdef nogil"

This reverts commit 0b7e52c797.

* Revert "Switch to qsort"

This reverts commit a98d71a942.

* Fix specials check while caching

* Modify URL test with emoticons

The multiple suffix tests result in the emoticon `:>`, which is now
retokenized into one token as a special case after the suffixes are
split off.

* Refactor _apply_special_cases()

* Use cdef ints for span info used in multiple spots

* Modify _filter_special_spans() to prefer earlier

Parallel to #4414, modify _filter_special_spans() so that the earlier
span is preferred for overlapping spans of the same length.

* Replace MatchStruct with Entity

Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.

* Replace Entity with more general SpanC

* Replace MatchStruct with SpanC

* Add error in debug-data if no dev docs are available (see #4575)

* Update azure-pipelines.yml

* Revert "Update azure-pipelines.yml"

This reverts commit ed1060cf59.

* Use latest wasabi

* Reorganise install_requires

* add dframcy to universe.json (#4580)

* Update universe.json [ci skip]

* Fix multiprocessing for as_tuples=True (#4582)

* Fix conllu script (#4579)

* force extensions to avoid clash between example scripts

* fix arg order and default file encoding

* add example config for conllu script

* newline

* move extension definitions to main function

* few more encodings fixes

* Add load_from_docbin example [ci skip]

TODO: upload the file somewhere

* Update README.md

* Add warnings about 3.8 (resolves #4593) [ci skip]

* Fixed typo: Added space between "recognize" and "various" (#4600)

* Fix DocBin.merge() example (#4599)

* Replace function registries with catalogue (#4584)

* Replace functions registries with catalogue

* Update __init__.py

* Fix test

* Revert unrelated flag [ci skip]

* Bugfix/dep matcher issue 4590 (#4601)

* add contributor agreement for prilopes

* add test for issue #4590

* fix on_match params for DependencyMacther (#4590)

* Minor updates to language example sentences (#4608)

* Add punctuation to Spanish example sentences

* Combine multilanguage examples for lang xx

* Add punctuation to nb examples

* Always realloc to a larger size

Avoid potential (unlikely) edge case and cymem error seen in #4604.

* Add error in debug-data if no dev docs are available (see #4575)

* Update debug-data for GoldCorpus / Example

* Ignore None label in misaligned NER data
2019-11-13 21:24:35 +01:00
adrianeboyd
3ac4e8eb7a Fix minor issues in debug-data (#4636)
* Add error in debug-data if no dev docs are available (see #4575)

* Update debug-data for GoldCorpus / Example

* Ignore None label in misaligned NER data
2019-11-13 15:25:03 +01:00
Sofie Van Landeghem
e48a09df4e Example class for training data (#4543)
* OrigAnnot class instead of gold.orig_annot list of zipped tuples

* from_orig to replace from_annot_tuples

* rename to RawAnnot

* some unit tests for GoldParse creation and internal format

* removing orig_annot and switching to lists instead of tuple

* rewriting tuples to use RawAnnot (+ debug statements, WIP)

* fix pop() changing the data

* small fixes

* pop-append fixes

* return RawAnnot for existing GoldParse to have uniform interface

* clean up imports

* fix merge_sents

* add unit test for 4402 with new structure (not working yet)

* introduce DocAnnot

* typo fixes

* add unit test for merge_sents

* rename from_orig to from_raw

* fixing unit tests

* fix nn parser

* read_annots to produce text, doc_annot pairs

* _make_golds fix

* rename golds_to_gold_annots

* small fixes

* fix encoding

* have golds_to_gold_annots use DocAnnot

* missed a spot

* merge_sents as function in DocAnnot

* allow specifying only part of the token-level annotations

* refactor with Example class + underlying dicts

* pipeline components to work with Example objects (wip)

* input checking

* fix yielding

* fix calls to update

* small fixes

* fix scorer unit test with new format

* fix kwargs order

* fixes for ud and conllu scripts

* fix reading data for conllu script

* add in proper errors (not fixed numbering yet to avoid merge conflicts)

* fixing few more small bugs

* fix EL script
2019-11-11 17:35:27 +01:00
Ines Montani
cf4ec88b38 Use latest wasabi 2019-11-04 02:38:45 +01:00
Ines Montani
6ec119d976 Add error in debug-data if no dev docs are available (see #4575) 2019-11-02 16:08:11 +01:00
Matthew Honnibal
d5509e0989 Support Mish activation (requires Thinc 7.3) (#4536)
* Add arch for MishWindowEncoder

* Support mish in tok2vec and conv window >=2

* Pass new tok2vec settings from parser

* Syntax error

* Fix tok2vec setting

* Fix registration of MishWindowEncoder

* Fix receptive field setting

* Fix mish arch

* Pass more options from parser

* Support more tok2vec options in pretrain

* Require thinc 7.3

* Add docs [ci skip]

* Require thinc 7.3.0.dev0 to run CI

* Run black

* Fix typo

* Update Thinc version


Co-authored-by: Ines Montani <ines@ines.io>
2019-10-28 15:16:33 +01:00
Ines Montani
c5e41247e8 Tidy up and auto-format 2019-10-28 12:43:55 +01:00
Matthew Honnibal
f0ec7bcb79
Flag to ignore examples with mismatched raw/gold text (#4534)
* Flag to ignore examples with mismatched raw/gold text

After #4525, we're seeing some alignment failures on our OntoNotes data. I think we actually have fixes for most of these cases.

In general it's better to fix the data, but it seems good to allow the GoldCorpus class to just skip cases where the raw text doesn't
match up to the gold words. I think previously we were silently ignoring these cases.

* Try to fix test on Python 2.7
2019-10-28 11:40:12 +01:00
Ines Montani
d2da117114 Also support passing list to Language.disable_pipes (#4521)
* Also support passing list to Language.disable_pipes

* Adjust internals
2019-10-25 16:19:08 +02:00
Ines Montani
cc05d9dad6 Auto-format [ci skip] 2019-10-24 16:21:08 +02:00
adrianeboyd
f5c551a43a Checks/errors related to ill-formed IOB input in CLI convert and debug-data (#4487)
* Error for ill-formed input to iob_to_biluo()

Check for empty label in iob_to_biluo(), which can result from
ill-formed input.

* Check for empty NER label in debug-data
2019-10-21 12:20:28 +02:00
adrianeboyd
8d3de90bc4 Suppress convert output if writing to stdout (#4472) 2019-10-18 18:12:59 +02:00
adrianeboyd
135e3de531 Check for docs with 2+ sentences in debug-data (#4467) 2019-10-18 10:59:16 +02:00
Sofie Van Landeghem
2d249a9502 KB extensions and better parsing of WikiData (#4375)
* fix overflow error on windows

* more documentation & logging fixes

* md fix

* 3 different limit parameters to play with execution time

* bug fixes directory locations

* small fixes

* exclude dev test articles from prior probabilities stats

* small fixes

* filtering wikidata entities, removing numeric and meta items

* adding aliases from wikidata also to the KB

* fix adding WD aliases

* adding also new aliases to previously added entities

* fixing comma's

* small doc fixes

* adding subclassof filtering

* append alias functionality in KB

* prevent appending the same entity-alias pair

* fix for appending WD aliases

* remove date filter

* remove unnecessary import

* small corrections and reformatting

* remove WD aliases for now (too slow)

* removing numeric entities from training and evaluation

* small fixes

* shortcut during prediction if there is only one candidate

* add counts and fscore logging, remove FP NER from evaluation

* fix entity_linker.predict to take docs instead of single sentences

* remove enumeration sentences from the WP dataset

* entity_linker.update to process full doc instead of single sentence

* spelling corrections and dump locations in readme

* NLP IO fix

* reading KB is unnecessary at the end of the pipeline

* small logging fix

* remove empty files
2019-10-14 12:28:53 +02:00
Matthew Honnibal
fd4a5341b0 Fix ner_jsonl2json converter (fix #4389) (#4394) 2019-10-08 00:52:45 +02:00
Matthew Honnibal
29f9fec267
Improve spacy pretrain (#4393)
* Support bilstm_depth arg in spacy pretrain

* Add option to ignore zero vectors in get_cossim_loss

* Use cosine loss in Cloze multitask
2019-10-07 23:34:58 +02:00
Ines Montani
9cd6ca3e4d Improve usage of pkg_resources and handling of entry points (#4387)
* Only import pkg_resources where it's needed

Apparently it's really slow

* Use importlib_metadata for entry points

* Revert "Only import pkg_resources where it's needed"

This reverts commit 5ed8c03afa.

* Revert "Revert "Only import pkg_resources where it's needed""

This reverts commit 8b30b57957.

* Revert "Use importlib_metadata for entry points"

This reverts commit 9f071f5c40.

* Revert "Revert "Use importlib_metadata for entry points""

This reverts commit 02e12a17ec.

* Skip test that weirdly hangs

* Fix hanging test by using global
2019-10-07 17:22:09 +02:00
Ines Montani
b6670bf0c2 Use consistent spelling 2019-10-02 10:37:39 +02:00
Ines Montani
f8d1e2f214 Update CLI docs [ci skip] 2019-09-28 13:12:30 +02:00
adrianeboyd
3906785b49 Initialize low data warning for debug-data parser (#4331) 2019-09-27 20:56:49 +02:00
Matthew Honnibal
27ace84f4a Support model name in init-model 2019-09-26 03:01:32 +02:00
Matthew Honnibal
1251b57dbb Fix vectors name arg to init-model 2019-09-25 14:21:27 +02:00
Matthew Honnibal
92ed4dc5e0
Allow vectors name to be set in init-model (#4321)
* Allow vectors name to be specified in init-model

* Document --vectors-name argument to init-model

* Update website/docs/api/cli.md

Co-Authored-By: Ines Montani <ines@ines.io>
2019-09-25 13:11:00 +02:00
Matthew Honnibal
e34b4a38b0 Fix set labels meta 2019-09-19 00:56:07 +02:00
Ines Montani
00a8cbc306 Tidy up and auto-format 2019-09-18 20:27:03 +02:00
Ines Montani
a84025d70b Remove --no-deps from default pip args on download
Add warning if user is executing spaCy without having it installed and add --no-deps to prevent the package from being redownloaded
2019-09-16 23:32:41 +02:00
adrianeboyd
b5d999e510 Add textcat to train CLI (#4226)
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Ines Montani
b544dcb3c5 Document debug-data [ci skip] 2019-09-12 15:26:20 +02:00
Ines Montani
05a2df6616 Remove not implemented file validation [ci skip] 2019-09-12 15:26:02 +02:00
Ines Montani
655b434553 Merge branch 'master' into develop 2019-09-12 11:39:18 +02:00
Ines Montani
af25323653 Tidy up and auto-format 2019-09-11 14:00:36 +02:00
Matthew Honnibal
af93997993 Fix conllu converter 2019-09-11 13:28:07 +02:00
Ines Montani
e82a8d0d7a Merge branch 'master' into develop 2019-09-11 11:52:38 +02:00
Ines Montani
6279d74c65 Tidy up and auto-format 2019-09-11 11:38:22 +02:00
Matthew Honnibal
7b858ba606 Update from master 2019-09-10 20:14:08 +02:00
Sofie Van Landeghem
482c7cd1b9 pulling tqdm imports in functions to avoid bug (tmp fix) (#4263) 2019-09-09 16:32:11 +02:00
Matthew Honnibal
1a65c5b7af Update develop from master 2019-09-08 18:21:41 +02:00
Ines Montani
cd90752193 Tidy up and auto-format [ci skip] 2019-08-31 13:39:06 +02:00
adrianeboyd
82159b5c19 Updates/bugfixes for NER/IOB converters (#4186)
* Updates/bugfixes for NER/IOB converters

* Converter formats `ner` and `iob` use autodetect to choose a converter if
  possible

* `iob2json` is reverted to handle sentence-per-line data like
  `word1|pos1|ent1 word2|pos2|ent2`

  * Fix bug in `merge_sentences()` so the second sentence in each batch isn't
    skipped

* `conll_ner2json` is made more general so it can handle more formats with
  whitespace-separated columns

  * Supports all formats where the first column is the token and the final
    column is the IOB tag; if present, the second column is the POS tag

  * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O`
    separates documents

  * Add option for segmenting sentences (new flag `-s`)

  * Parser-based sentence segmentation with a provided model, otherwise with
    sentencizer (new option `-b` to specify model)

  * Can group sentences into documents with `n_sents` as long as sentence
    segmentation is available

  * Only applies automatic segmentation when there are no existing delimiters
    in the data

* Provide info about settings applied during conversion with warnings and
  suggestions if settings conflict or might not be not optimal.

* Add tests for common formats

* Add '(default)' back to docs for -c auto

* Add document count back to output

* Revert changes to converter output message

* Use explicit tabs in convert CLI test data

* Adjust/add messages for n_sents=1 default

* Add sample NER data to training examples

* Update README

* Add links in docs to example NER data

* Define msg within converters
2019-08-29 12:04:01 +02:00
Adriane Boyd
f3906950d3 Add separate noise vs orth level to train CLI 2019-08-29 09:10:35 +02:00
Matthew Honnibal
bc5ce49859 Fix 'noise_level' in train cmd 2019-08-28 17:55:38 +02:00
Matthew Honnibal
bb911e5f4e Fix #3830: 'subtok' label being added even if learn_tokens=False (#4188)
* Prevent subtok label if not learning tokens

The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.

* Make merge_subtokens a parser post-process if learn_subtokens

* Fix train script

* Add test for 3830: subtok problem

* Fix handlign of non-subtok in parser training
2019-08-23 17:54:00 +02:00
Ines Montani
f65e36925d Fix absolute imports and avoid importing from cli 2019-08-20 15:08:59 +02:00
Ines Montani
7e8be44218 Auto-format 2019-08-20 15:06:31 +02:00
Ines Montani
009280fbc5 Tidy up and auto-format 2019-08-18 15:09:16 +02:00
Ines Montani
89f2b87266 Open file as utf-8 (closes #4138) 2019-08-18 13:55:34 +02:00
Ines Montani
f35a8221d8 Move generation of parses out of with blocks 2019-08-18 13:54:26 +02:00
Ines Montani
e5c7e19e82 Fix typo and auto-format [ci skip] 2019-08-16 10:53:38 +02:00
adrianeboyd
a58cb023d7 WIP: Extending debug-data (#4114)
* Extending debug-data with dependency checks, etc.

* Modify debug-data to load with GoldCorpus to iterate over .json/.jsonl
files within directories

* Add GoldCorpus iterator train_docs_without_preprocessing to load
original train docs without shuffling and projectivizing

* Report number of misaligned tokens

* Add more dependency checks and messages

* Update spacy/cli/debug_data.py

Co-Authored-By: Ines Montani <ines@ines.io>

* Fixed conflict

* Move counts to _compile_gold()

* Move all dependency nonproj/sent/head/cycle counting to
_compile_gold()

* Unclobber previous merges

* Update variable names

* Update more variable names, fix misspelling

* Don't clobber loading error messages

* Only warn about misaligned tokens if present
2019-08-16 10:52:46 +02:00
Ines Montani
6bec24cdd0 Require downloaded model in pkg_resources (#4090) 2019-08-07 13:18:11 +02:00
Ines Montani
8718ca8b1f
Fix init_model if there's no vocab (closes #4048) (#4049) 2019-08-01 17:26:09 +02:00
Ines Montani
a3723f439c Fix formatting [ci skip] 2019-07-27 16:35:42 +02:00
Ines Montani
e000b5ed82 Also support "requirements" in model.json 2019-07-27 13:34:57 +02:00
Ines Montani
f2ea3e3ea2
Merge branch 'master' into feature/nel-wiki 2019-07-09 21:57:47 +02:00
Björn Böing
04982ccc40 Update pretrain to prevent unintended overwriting of weight fil… (#3902)
* Update pretrain to prevent unintended overwriting of weight files for #3859

* Add '--epoch-start' to pretrain docs

* Add mising pretrain arguments to bash example

* Update doc tag for v2.1.5
2019-07-09 21:48:30 +02:00
Ines Montani
ae2c208735 Auto-format [ci skip] 2019-06-20 10:36:38 +02:00
Ines Montani
872121955c Update error code 2019-06-20 10:35:51 +02:00
Björn Böing
ebf5a04d6c Update pretrain docs and add unsupported loss_func error (#3860)
* Add error to `get_vectors_loss` for unsupported loss function of `pretrain`

* Add missing "--loss-func" argument to pretrain docs. Update pretrain plac annotations to match docs.

* Add missing quotation marks
2019-06-20 10:30:44 +02:00
BreakBB
d8573ee715 Update error raising for CLI pretrain to fix #3840 (#3843)
* Add check for empty input file to CLI pretrain

* Raise error if JSONL is not a dict or contains neither `tokens` nor `text` key

* Skip empty values for correct pretrain keys and log a counter as warning

* Add tests for CLI pretrain core function make_docs.

* Add a short hint for the `tokens` key to the CLI pretrain docs

* Add success message to CLI pretrain

* Update model loading to fix the tests

* Skip empty values and do not create docs out of it
2019-06-16 13:22:57 +02:00
Motoki Wu
9c064e6ad9 Add resume logic to spacy pretrain (#3652)
* Added ability to resume training

* Add to readmee

* Remove duplicate entry
2019-06-12 13:29:23 +02:00
intrafind
2bba2a3536 Fix for #3811 (#3815)
Corrected type of seed parameter.
2019-06-03 18:32:47 +02:00
Ines Montani
aea1c93a05 Replace cytoolz.partition_all with util.minibatch 2019-05-11 21:12:09 +02:00
Ines Montani
0bf6441863 Fix .iob converter (closes #3620) 2019-05-11 19:15:26 +02:00
Ines Montani
6b3a79ac96 Call rmtree and copytree with strings (closes #3713) 2019-05-11 15:48:35 +02:00
devforfu
21af12eb53 Make "text" key in JSONL format optional when "tokens" key is provided (#3721)
* Fix issue with forcing text key when it is not required

* Extending the docs to reflect the new behavior
2019-05-11 15:41:29 +02:00
F0rge1cE
dd1e6b0bc6 Fix offset bug in loading pre-trained word2vec. (#3689)
* Fix offset bug in loading pre-trained word2vec.

* add contributor agreement
2019-05-06 23:00:38 +02:00
Ines Montani
e0f487f904 Rename early_stopping_iter to n_early_stopping 2019-04-22 14:31:25 +02:00
Ines Montani
9767427669 Auto-format 2019-04-22 14:31:11 +02:00
Ines Montani
7917ce2f73 Make flag shortcut consistent and document 2019-04-22 14:23:44 +02:00
Motoki Wu
8e2cef49f3 Add save after --save-every batches for spacy pretrain (#3510)
<!--- Provide a general summary of your changes in the title. -->

When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches.

## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->

To test...

Save this file to `sample_sents.jsonl`

```
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
```

Then run `--save-every 2` when pretraining.

```bash
spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2
```

And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name.

At the end the training, you should see these files (`ls here/`):

```bash
config.json     model2.bin      model5.bin      model8.bin
log.jsonl       model2.temp.bin model5.temp.bin model8.temp.bin
model0.bin      model3.bin      model6.bin      model9.bin
model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin
model1.bin      model4.bin      model7.bin
model1.temp.bin model4.temp.bin model7.temp.bin
```

### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->

This is a new feature to `spacy pretrain`.

🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).** 

```
Processing matcher.pyx
[Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx'
Traceback (most recent call last):
  File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module>
    run(args.root)
  File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run
    process(base, filename, db)
  File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process
    preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp")
  File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd
    func(*args)
  File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx
    raise Exception("Cython failed")
Exception: Cython failed
Traceback (most recent call last):
  File "setup.py", line 276, in <module>
    setup_package()
  File "setup.py", line 209, in setup_package
    generate_cython(root, "spacy")
  File "setup.py", line 132, in generate_cython
    raise RuntimeError("Running cythonize failed")
RuntimeError: Running cythonize failed
```

Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm`

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-04-22 14:10:16 +02:00
Krzysztof Kowalczyk
cc1516ec26 Improved training and evaluation (#3538)
* Add early stopping

* Add return_score option to evaluate

* Fix missing str to path conversion

* Fix import + old python compatibility

* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
2019-04-15 12:04:36 +02:00
Shikhar Chauhan
bbf6f9f764 Change default output format from jsonl to json for cli convert (#3583) (closes #3523)
* Changing default ouput format from jsonl to json for cli convert

* Adding Contributor Agreement
2019-04-12 11:31:23 +02:00
Ines Montani
c23e234d65 Auto-format 2019-04-01 12:11:27 +02:00
Matthew Honnibal
1c8ff59185
Merge pull request #3441 from explosion/fix/cli-ud-scripts
💫 Move UD scripts to bin
2019-03-20 12:19:15 +01:00
Matthew Honnibal
1612990e88 Implement cosine loss for spacy pretrain. Make default 2019-03-20 11:06:58 +00:00
Ines Montani
7400c7f8a7 Move UD scripts to bin 2019-03-20 01:19:34 +01:00
Ines Montani
685fff40cf Revert "Add --always-link flag to cli.download (see #3435)"
This reverts commit 583a566843.
2019-03-20 01:03:40 +01:00
Ines Montani
583a566843 Add --always-link flag to cli.download (see #3435) 2019-03-19 22:03:27 +01:00
Matthew Honnibal
47e110375d Fix jsonl to json conversion (#3419)
* Fix spacy.gold.docs_to_json function

* Fix jsonl2json converter
2019-03-17 22:12:54 +01:00
Ines Montani
226db621d0 Strip out .dev versions in spacy validate [ci skip] 2019-03-17 12:16:53 +01:00
Matthew Honnibal
62afa64a8d Expose batch size and length caps on CLI for pretrain (#3417)
Add and document CLI options for batch size, max doc length, min doc length for `spacy pretrain`.

Also improve CLI output.

Closes #3216 

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-16 21:38:45 +01:00
Matthew Honnibal
58d562d9b0
Merge pull request #3416 from explosion/feature/improve-beam
Improve beam search support
2019-03-16 18:42:18 +01:00
Ines Montani
0f8739c7cb Update train.py 2019-03-16 16:04:15 +01:00
Ines Montani
e7aa25d9b1 Fix beam width integration 2019-03-16 16:02:47 +01:00
Ines Montani
c94742ff64 Only add beam width if customised 2019-03-16 15:55:31 +01:00
Ines Montani
7a354761c7 Auto-format 2019-03-16 15:55:13 +01:00
Matthew Honnibal
daa8c3787a Add eval_beam_widths argument to spacy train 2019-03-16 15:02:39 +01:00
Ryan Ford
00842d7f1b Merging conversion scripts for conll formats (#3405)
* merging conllu/conll and conllubio scripts

* tabs to spaces

* removing conllubio2json from converters/__init__.py

* Move not-really-CLI tests to misc

* Add converter test using no-ud data

* Fix test I broke

* removing include_biluo parameter

* fixing read_conllx

* remove include_biluo from convert.py
2019-03-15 18:14:46 +01:00
Matthew Honnibal
f762c36e61 Evaluate accuracy at multiple beam widths 2019-03-15 15:19:49 +01:00
Ines Montani
3fe5811fa7 Only link model after download if shortcut link (#3378) 2019-03-10 13:02:24 +01:00
Ines Montani
76764fcf59 💫 Improve converters and training data file formats (#3374)
* Populate converter argument info automatically

* Add conversion option for msgpack

* Update docs

* Allow reading training data from JSONL
2019-03-08 23:15:23 +01:00
Ines Montani
daaeeb7a2b Merge branch 'master' into develop 2019-03-07 22:07:31 +01:00
Adrien Ball
88909a9adb Fix egg fragments in direct download (#3369)
## Description
The egg fragment in the URL must be of the form `#egg=package_name==version` instead of `#egg=package_name-version`.
One of the consequences of specifying wrong egg fragments is that `pip` does not recognize the package and its version properly, and thus it re-downloads the package systematically.

I'm not sure how this should be tested properly. 
Here is what I had before the fix when running the same direct download twice:
```
$ python -m spacy download en_core_web_sm-2.0.0 --direct
Looking in indexes: https://pypi.python.org/simple/
Collecting en_core_web_sm-2.0.0 from https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz#egg=en_core_web_sm-2.0.0
  Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz (37.4MB)
    100% |████████████████████████████████| 37.4MB 1.6MB/s
  Generating metadata for package en-core-web-sm-2.0.0 produced metadata for project name en-core-web-sm. Fix your #egg=en-core-web-sm-2.0.0 fragments.
Installing collected packages: en-core-web-sm
  Running setup.py install for en-core-web-sm ... done
Successfully installed en-core-web-sm-2.0.0
$ python -m spacy download en_core_web_sm-2.0.0 --direct
Looking in indexes: https://pypi.python.org/simple/
Collecting en_core_web_sm-2.0.0 from https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz#egg=en_core_web_sm-2.0.0
  Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz (37.4MB)
    100% |████████████████████████████████| 37.4MB 919kB/s
  Generating metadata for package en-core-web-sm-2.0.0 produced metadata for project name en-core-web-sm. Fix your #egg=en-core-web-sm-2.0.0 fragments.
Requirement already satisfied (use --upgrade to upgrade): en-core-web-sm from https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz#egg=en_core_web_sm-2.0.0 in ./venv3/lib/python3.6/site-packages
```

And after the fix:
```
$ python -m spacy download en_core_web_sm-2.0.0 --direct
Looking in indexes: https://pypi.python.org/simple/
Collecting en_core_web_sm==2.0.0 from https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz#egg=en_core_web_sm==2.0.0
  Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz (37.4MB)
    100% |████████████████████████████████| 37.4MB 1.1MB/s
Installing collected packages: en-core-web-sm
  Running setup.py install for en-core-web-sm ... done
Successfully installed en-core-web-sm-2.0.0
$ python -m spacy download en_core_web_sm-2.0.0 --direct
Looking in indexes: https://pypi.python.org/simple/
Requirement already satisfied: en_core_web_sm==2.0.0 from https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz#egg=en_core_web_sm==2.0.0 in ./venv3/lib/python3.6/site-packages (2.0.0)
```

### Types of change
This is an enhancement as it avoids unnecessary downloads of (potentially big) spacy models, when they have already been downloaded.

## Checklist
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-07 21:07:19 +01:00
Ines Montani
5651a0d052 💫 Replace {Doc,Span}.merge with Doc.retokenize (#3280)
* Add deprecation warning to Doc.merge and Span.merge

* Replace {Doc,Span}.merge with Doc.retokenize
2019-02-15 10:29:44 +01:00
Ines Montani
483dddc9bc 💫 Add token match pattern validation via JSON schemas (#3244)
* Add custom MatchPatternError

* Improve validators and add validation option to Matcher

* Adjust formatting

* Never validate in Matcher within PhraseMatcher

If we do decide to make validate default to True, the PhraseMatcher's Matcher shouldn't ever validate. Here, we create the patterns automatically anyways (and it's currently unclear whether the validation has performance impacts at a very large scale).
2019-02-13 01:47:26 +11:00
Ines Montani
25602c794c Tidy up and fix small bugs and typos 2019-02-08 14:14:49 +01:00
Ines Montani
5d0b60999d Merge branch 'master' into develop 2019-02-07 20:54:07 +01:00
Ines Montani
338d659bd0 Store JSON schemas in Python and tidy up (#3235) 2019-02-07 19:44:31 +11:00
Sofie
66016ac289 Batch UD evaluation script (#3174)
* running UD eval

* printing timing of tokenizer: tokens per second

* timing of default English model

* structured output and parameterization to compare different runs

* additional flag to allow evaluation without parsing info

* printing verbose log of errors for manual inspection

* printing over- and undersegmented cases (and combo's)

* add under and oversegmented numbers to Score and structured output

* print high-freq over/under segmented words and word shapes

* printing examples as part of the structured output

* print the results to file

* batch run of different models and treebanks per language

* cleaning up code

* commandline script to process all languages in spaCy & UD

* heuristic to remove blinded corpora and option to run one single best per language

* pathlib instead of os for file paths
2019-01-27 06:01:02 +01:00
Gavriel Loria
9a5003d5c8 iob converter: add 'exception' for error 'too many values' (#3159)
* added contributor agreement

* issue #3128 throw exception on bad IOB/2 formatting

* Update spacy/cli/converters/iob2json.py with ValueError

Co-Authored-By: gavrieltal <gtloria@protonmail.com>
2019-01-16 13:44:16 +01:00
Mark Neumann
e599ed9ef8 Allow vectors to be optional in init-model, more robust string counting (#3155)
* more robust init-model

* key not word

* add license agreement
2019-01-14 23:48:30 +01:00
Jari Bakken
ba8a840f84 spacy.cli.evaluate: fix TypeError (#3101) 2018-12-28 11:14:28 +01:00
Jari Bakken
0546135fba Set vectors.name when updating meta.json during training (#3100)
* Set vectors.name when updating meta.json during training

* add vectors name to meta in `spacy package`
2018-12-27 19:55:40 +01:00
Jari Bakken
cc95167b6d cli.convert: fix typo in converter arguments (#3099) 2018-12-27 18:08:41 +01:00
Matthew Honnibal
1788bf1af7 Unbreak progress bar 2018-12-20 13:57:00 +01:00
Matthew Honnibal
c315e08e6e Fix formatting of meta.json after spacy package 2018-12-19 14:36:08 +01:00
Matthew Honnibal
0f83b98afa Remove unused code from spacy pretrain 2018-12-18 19:19:26 +01:00
Ines Montani
ae880ef912 Tidy up merge conflict leftovers 2018-12-18 13:58:30 +01:00
Ines Montani
61d09c481b Merge branch 'master' into develop 2018-12-18 13:48:10 +01:00
Matthew Honnibal
92f4b9c8ea set max batch size to 1000 2018-12-17 23:15:39 +00:00
Matthew Honnibal
7c504b6ddb Try to implement more losses for pretraining
* Try to implement cosine loss
This one seems to be correct? Still unsure, but it performs okay

* Try to implement the von Mises-Fisher loss
This one's definitely not right yet.
2018-12-17 14:48:27 +00:00
Matthew Honnibal
ab9494b2a3 Merge branch 'develop' of https://github.com/explosion/spaCy into develop 2018-12-12 21:08:50 +00:00
Matthew Honnibal
fb56028476 Remove b1 and b2 decay 2018-12-12 12:37:07 +01:00
Matthew Honnibal
df15279e88 Reduce batch size during pretrain 2018-12-10 15:30:23 +00:00
Matthew Honnibal
83ac227bd3
💫 Better support for semi-supervised learning (#3035)
The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
Support semi-supervised learning in spacy train

One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing.

    Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning.

    Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective.

    Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage:

python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze

Implement rehearsal methods for pipeline components

The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows:

    Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model.

    Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details.

    Implement rehearsal updates for tagger

    Implement rehearsal updates for text categoriz
2018-12-10 16:25:33 +01:00
Matthew Honnibal
b1c8731b4d Make spacy train respect LOG_FRIENDLY 2018-12-10 09:46:53 +01:00
Matthew Honnibal
0994dc50d8 Merge branch 'develop' of https://github.com/explosion/spaCy into develop 2018-12-10 05:35:01 +00:00
Matthew Honnibal
24f2e9bc07 Tweak training params 2018-12-09 17:08:58 +00:00
Matthew Honnibal
1b1a1af193 Fix printing in spacy train 2018-12-09 06:03:49 +01:00
Matthew Honnibal
cb16b78b0d Set dropout rate to 0.2 2018-12-08 19:59:11 +01:00
Ines Montani
ffdd5e964f
Small CLI improvements (#3030)
* Add todo

* Auto-format

* Update wasabi pin

* Format training results with wasabi

* Remove loading animation from model saving

Currently behaves weirdly

* Inline messages

* Remove unnecessary path2str

Already taken care of by printer

* Inline messages in CLI

* Remove unused function

* Move loading indicator into loading function

* Check for invalid whitespace entities
2018-12-08 11:49:43 +01:00
Matthew Honnibal
b2bfd1e1c8 Move dropout and batch sizes out of global scope in train cmd 2018-12-07 20:54:35 +01:00
Matthew Honnibal
427c0693c8 Fix missing comma in init-model command 2018-12-06 22:48:31 +01:00
Matthew Honnibal
0a60726215 Remove cytoolz usage in CLI 2018-12-06 20:37:00 +01:00
Matthew Honnibal
711f108532 Fix cytoolz import cytoolz 2018-12-06 16:04:12 +01:00
Gavriel Loria
9c8c4287bf Accept iob2 and allow generic whitespace (#2999)
* accept non-pipe whitespace as delimiter; allow iob2 filename

* added small documentation note for IOB2 allowance

* added contributor agreement
2018-12-06 15:50:25 +01:00
Ines Montani
5b2741f751 Remove unused cytoolz / itertools imports 2018-12-03 02:12:07 +01:00
Ines Montani
f37863093a 💫 Replace ujson, msgpack and dill/pickle/cloudpickle with srsly (#3003)
Remove hacks and wrappers, keep code in sync across our libraries and move spaCy a few steps closer to only depending on packages with binary wheels 🎉

See here: https://github.com/explosion/srsly

    Serialization is hard, especially across Python versions and multiple platforms. After dealing with many subtle bugs over the years (encodings, locales, large files) our libraries like spaCy and Prodigy have steadily grown a number of utility functions to wrap the multiple serialization formats we need to support (especially json, msgpack and pickle). These wrapping functions ended up duplicated across our codebases, so we wanted to put them in one place.

    At the same time, we noticed that having a lot of small dependencies was making maintainence harder, and making installation slower. To solve this, we've made srsly standalone, by including the component packages directly within it. This way we can provide all the serialization utilities we need in a single binary wheel.

    srsly currently includes forks of the following packages:

        ujson
        msgpack
        msgpack-numpy
        cloudpickle



* WIP: replace json/ujson with srsly

* Replace ujson in examples

Use regular json instead of srsly to make code easier to read and follow

* Update requirements

* Fix imports

* Fix typos

* Replace msgpack with srsly

* Fix warning
2018-12-03 01:28:22 +01:00
Matthew Honnibal
d9d339186b Fix dropout and batch-size defaults 2018-12-01 13:42:35 +00:00